Anthony G. Mann

Learn More
A new method of compensating the frequency-temperature dependence of high-and monolithic sapphire dielectric resonators near liquid nitrogen temperature is presented. This is achieved by doping monocrystalline sapphire with Ti(3+) ions. This technique offers significant advantages over other methods.
We show that temperature compensation based on differential thermal expansion between sapphire and fused silica can be used to create a Fabry-Perot cavity with an exceptionally low coefficient of thermal expansion at low temperatures. We describe the design of such a cavity that utilizes shaped fused silica mirrors and a sapphire spacer. The geometry of the(More)
  • 1