Anthony G Coyne

Learn More
Fragment-based approaches to finding novel small molecules that bind to proteins are now firmly established in drug discovery and chemical biology. Initially developed primarily in a few centers in the biotech and pharma industry, this methodology has now been adopted widely in both the pharmaceutical industry and academia. After the initial success with(More)
The essential enzyme CYP121 is a target for drug development against antibiotic resistant strains of Mycobacterium tuberculosis. A triazol-1-yl phenol fragment 1 was identified to bind to CYP121 using a cascade of biophysical assays. Synthetic merging and optimization of 1 produced a 100-fold improvement in binding affinity, yielding lead compound 2 (KD =(More)
The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a(More)
Fragment-based approaches have now become firmly established in the drug discovery armoury. After notable early successes against protein kinases, the versatility and power of fragment-based approaches are increasingly being demonstrated on more diverse and difficult protein targets. This review highlights seven examples including targeting protein-protein(More)
Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2'-(4,4'-(heptane-1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2'-(4,4'-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic(More)
3.1.2. Huisgen [3 + 2] Cycloaddition Reaction 6313 3.1.3. Claisen Rearrangement 6315 3.2. Multicomponent Reactions 6316 3.3. Nucleophilic Ring-Opening Reactions 6316 3.4. Wittig Reaction 6318 3.5. Bioorthogonal Reactions 6318 4. Catalyzed Reactions 6319 4.1. Metal-Catalyzed Reactions 6319 4.1.1. Pericyclic Reactions 6320 4.1.2. Arylation Reactions 6321(More)
The development of small molecules that inhibit protein-protein interactions continues to be a challenge in chemical biology and drug discovery. Herein we report the development of indole-based fragments that bind in a shallow surface pocket of a humanised surrogate of RAD51. RAD51 is an ATP-dependent recombinase that plays a key role in the repair of(More)
The fragment-based approach is a firmly established paradigm for developing small-molecule ligands as chemical tools and leads for drug development. At its heart, this powerful methodology involves the structure-guided design and synthesis of potent ligands from weak binding low-molecular-weight fragment molecules (typically <250 Da). There are three main(More)
The cyclo-dipeptide substrates of the essential M. tuberculosis (Mtb) enzyme CYP121 were deconstructed into their component fragments and screened against the enzyme. A number of hits were identified, one of which exhibited an unexpected inhibitor-like binding mode. The inhibitory pharmacophore was elucidated, and fragment binding affinity was rapidly(More)
The nature of the rate enhancements caused by gradually increasing the mole fraction of water in the solvent (from 0 to 1) for the cycloaddition reactions of pyridazinium-dicyanomethanide 1,3-dipole, 2, with the dipolarophiles ethyl vinyl ketone (a water-super dipolarophile) and methyl acrylate (a water-normal dipolarophile) in the organic solvents(More)