Learn More
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2(More)
Leucine-rich repeat kinase 2 (LRRK2) has drawn significant interest in the neuroscience research community because it is one of the most compelling targets for a potential disease-modifying Parkinson's disease therapy. Herein, we disclose structurally diverse small molecule inhibitors suitable for assessing the implications of sustained in vivo LRRK2(More)
Inhibition of the kinase activity of leucine-rich repeat kinase 2 (LRRK2) is under investigation as a possible treatment for Parkinson's disease. However, there is no clinical validation as yet, and the safety implications of targeting LRRK2 kinase activity are not well understood. We evaluated the potential safety risks by comparing human and mouse LRRK2(More)
There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinson's disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of(More)
Design, synthesis, and biological evaluation of several domains of the thiopeptide antibiotic thiostrepton led to the discovery of a biologically active fragment. The biological properties of this novel small organic molecule include antibiotic activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis(More)
Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to(More)
Ever since the world-shaping discovery of penicillin, nature's molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with(More)
A new synthetic method providing expedient access to a wide range of polyfunctionalized N-hydroxyindoles (IV) is reported. These unique constructs are assembled by nucleophilic additions to in situ generated α,β-unsaturated nitrones (III) through carbon-carbon and carbon-heteroatom bond formation. The new synthetic technology was applied to the synthesis of(More)
Aberrant activation of the PI3K-Akt-mTOR signaling pathway has been observed in human tumors and tumor cell lines, indicating that these protein kinases may be attractive therapeutic targets for treating cancer. Optimization of advanced lead 1 culminated in the discovery of clinical development candidate 8h, GDC-0349, a potent and selective ATP-competitive(More)