Learn More
The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We(More)
The CaVbeta subunits of voltage-gated calcium channels regulate these channels in several ways. Here we investigate the role of these auxiliary subunits in the expression of functional N-type channels at the plasma membrane and in the modulation by G-protein-coupled receptors of this neuronal channel. To do so, we mutated tryptophan 391 to an alanine within(More)
The mouse mutant ducky, a model for absence epilepsy, is characterized by spike-wave seizures and cerebellar ataxia. A mutation in Cacna2d2, the gene encoding the alpha 2 delta-2 voltage-dependent calcium channel accessory subunit, has been found to underlie the ducky phenotype. The alpha 2 delta-2 mRNA is strongly expressed in cerebellar Purkinje cells. We(More)
Expression of the calcium channel Ca(V)2.2 is markedly suppressed by coexpression with truncated constructs of Ca(V)2.2. Furthermore, a two-domain construct of Ca(V)2.1 mimicking an episodic ataxia-2 mutation strongly inhibited Ca(V)2.1 currents. We have now determined the specificity of this effect, identified a potential mechanism, and have shown that(More)
Voltage-gated calcium channels are thought to exist in the plasma membrane as heteromeric proteins, in which the alpha1 subunit is associated with two auxiliary subunits, the intracellular beta subunit and the alpha(2)delta subunit; both of these subunits influence the trafficking and properties of Ca(V)1 and Ca(V)2 channels. The alpha(2)delta subunits have(More)
Phosphatidylinositol 3-kinase (PI3K) has been shown to enhance native voltage-dependent calcium channel (Ca(v)) currents both in myocytes and in neurons; however, the mechanism(s) responsible for this regulation were not known. Here we show that PI3K promotes the translocation of GFP-tagged Ca(v) channels to the plasma membrane in both COS-7 cells and(More)
We have cloned and characterized a new member of the voltage-dependent Ca(2+) channel gamma subunit family, with a novel gene structure and striking properties. Unlike the genes of other potential gamma subunits identified by their homology to the stargazin gene, CACNG7 is a five-, and not four-exon gene whose mRNA encodes a protein we have designated(More)
Voltage-gated calcium channels (VGCCs) regulate calcium influx into all excitable cells. In the heart, the main calcium channels are the L-type VGCCs (LTCCs). These are localised to the sarcolemmal membrane, and are hetero-oligomeric complexes comprised of three non-covalently associated polypeptides; alpha1 (CaV1.2), alpha2delta and beta. We recently(More)
In this review, we examine what is known about the mechanism of action of the auxiliary alpha2delta subunits of voltage-gated Ca(2+) (Ca(v)) channels. First, to provide some background on the alpha2delta proteins, we discuss the genes encoding these channels, in addition to the topology and predicted structure of the alpha2delta subunits. We then describe(More)