Anthony B. Kulesa

Learn More
The extension of in vivo optical imaging for disease screening and image-guided surgical interventions requires brightly emitting, tissue-specific materials that optically transmit through living tissue and can be imaged with portable systems that display data in real-time. Recent work suggests that a new window across the short-wavelength infrared region(More)
Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input(More)
Effective screening methodologies for cells are challenged by the divergent and heterogeneous nature of phenotypes inherent to stem cell cultures, particularly on engineered biomaterial surfaces. In this study, we showcase a high-content, confocal imaging-based methodology to parse single-cell phenotypes by quantifying organizational signatures of specific(More)
While distinct stem cell phenotypes follow global changes in chromatin marks, single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark(More)
Neuronal synapses contain dozens of protein species whose expression levels and localizations are key determinants of synaptic transmission and plasticity. The spectral properties of fluorophores used in conventional microscopy limit the number of measured proteins to four species within a given sample. The ability to perform high-throughput confocal or(More)
Immunoassays are one of the most versatile and widely performed biochemical assays and, given their selectivity and specificity, are used in both clinical and research settings. However, the high cost of reagents and relatively large sample volumes constrain the integration of immunoassays into many applications. Scaling the assay down within microfluidic(More)
  • 1