Learn More
Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project(More)
Molecular dynamics (MD) simulations of the N-terminal region of saposin C, containing amino acid residues 4-20 (saposin C4-20), were performed over 2.5 ns in 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayers. The simulations revealed several strong specific interactions of lysine 13 (Lys13) and(More)
The paper presents a new four-dimensional hyperchaotic system developed by extension of the generalized diffusionless Lorenz quations. The model is shown to not be equivalent to any hyperchaotic system that the authors know of. In particular, the model oes not display any equilibria, but can exhibit two-scroll hyperchaos as well as chaotic, quasiperiodic(More)
We report a three-channel, spectrally beam-combined (SBC), 1 mum fiber laser that produces 522 W of average power with near-diffraction-limited (M2 ~ 1.2) beam quality. The laser features a SBC power combining efficiency of 93%, versatile master-oscillator, power-amplifier fiber channels with up to 260 W of narrow-band, polarized, and(More)
We propose a novel approach of making large effective area laser fiber with higher threshold for the stimulated Brillouin scattering (SBS) using Al/Ge co-doping in the fiber core. The increased SBS threshold is achieved by reducing the acoustic-optic overlap integral while keeping the optical refractive index profile with a step structure. The manipulation(More)
The finely tuned structures of membrane channel proteins allow selective passage of ions through the available aqueous pores. To understand channel function, it is crucial to locate the pores and study their physical and chemical properties. Here, we propose a new pore-searching algorithm (TransPath), which uses the Configurational Bias Monte Carlo (CBMC)(More)
We present a new approach for simulating the motions of flexible polyelectrolyte chains based on the continuous kink-jump Monte Carlo technique coupled to a lattice field theory based calculation of the Poisson-Boltzmann (PB) electrostatic free energy "on the fly." This approach is compared to the configurational-bias Monte Carlo technique, in which the(More)