Annie Sittler

Learn More
The deposition of protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by polyglutamine (polyQ) proteins. We analyzed the effects of the heat shock protein (Hsp) 70 chaperone system on the aggregation of fragments of huntingtin (htt) with expanded polyQ tracts. In vitro, Hsp70 and its cochaperone Hsp40 suppressed the assembly of(More)
Huntington's disease (HD) is a progressive neurodegenerative disorder with no effective treatment. Geldanamycin is a benzoquinone ansamycin that binds to the heat shock protein Hsp90 and activates a heat shock response in mammalian cells. In this study, we show by using a filter retardation assay and immunofluorescence microscopy that treatment of mammalian(More)
Huntington's disease is a progressive neurodegenerative disorder caused by a polyglutamine [poly(Q)] repeat expansion in the first exon of the huntingtin protein. Previously, we showed that N-terminal huntingtin peptides with poly(Q) tracts in the pathological range (51-122 glutamines), but not with poly(Q) tracts in the normal range (20 and 30 glutamines),(More)
The mechanism by which aggregated polygins cause the selective neurodegeneration in Huntington's disease (HD) is unknown. Here, we show that the SH3GL3 protein, which is preferentially expressed in brain and testis, selectively interacts with the HD exon 1 protein (HDex1p) containing a glutamine repeat in the pathological range and promotes the formation of(More)
The fragile X syndrome results from transcriptional silencing of the FMR1 gene and the absence of its encoded FMRP protein. Two autosomal homologues of the FMR1 gene, FXR1 and FXR2, have been identified and the overall structures of the corresponding proteins are very similar to that of FMRP. Using antibodies raised against FXR1P, we observed that two major(More)
Impaired expression of the FMR1 gene is responsible for the fragile X mental retardation syndrome. The FMR1 gene encodes a cytoplasmic protein with RNA-binding properties. Its complex alternative splicing leads to several isoforms, whose abundance and specific functions in the cell are not known. We have cloned in expression vectors, cDNAs corresponding to(More)
We analyzed the distribution of FMR1, FXR1, FXR2 mRNA, and FMRP in whole normal human embryos and in the brains of normal and fragile X fetuses. The distributions of mRNA for the 3 genes in normal whole embryos and in the brains of normal male and female carrier fetuses were similar, with large amounts of mRNA in the nervous system and in several(More)
The pathogenesis of spinocerebellar ataxia type 7 and other neurodegenerative polyglutamine (polyQ) disorders correlates with the aberrant accumulation of toxic polyQ-expanded proteins in the nucleus. Promyelocytic leukemia protein (PML) nuclear bodies are often present in polyQ aggregates, but their relation to pathogenesis is unclear. We show that(More)
It has been reported that the ataxin-3 protein containing a polyglutamine sequence in the pathological range (61-84Q) is localized within the nucleus of neuronal cells, whereas ataxin-3 with a normal repeat length (12-37Q) is predominantly a cytoplasmic protein. In this study, the subcellular localization of the full-length ataxin-3 protein with a glutamine(More)