Learn More
Temperature is the most important factor affecting growth at high altitudes. As trees use much of the allocated carbon gained from photosynthesis to produce branches and stems, information on the timing and dynamics of secondary wood growth is crucial to assessing temperature thresholds for xylogenesis. We have carried out histological analyses to determine(More)
The authors compared 16 nondepressed obsessive-compulsive patients (OCS) with 8 normal controls (NC) of similar age for resting-state regional cerebral glucose metabolic rates (rCMRglu) using positron emission tomography with the fluorodeoxyglucose method. OCS were rated for clinical data, and a neuropsychological battery was administered to 14 patients on(More)
The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was(More)
In boreal ecosystems, an increase in soil temperature can stimulate plant growth. However, cambium phenology in trees was better explained by air than soil temperature, which suggested that soil temperature is not the main limiting factor affecting xylogenesis. Since soil temperature and snowmelt are correlated to air temperature, the question whether soil(More)
Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP](More)
In the short term, trees rely on the internal storage of water because it affects their ability to sustain photosynthesis and growth. However, water is not rapidly available for transpiration from all the compartments of the plant and the living tissues of the stem act as a buffer to preclude low water potentials during peaks of transpiration. In this(More)
The Canadian forest industry is turning its attention towards the unmanaged areas at higher latitudes, where the forest resource is still poorly understood because of lack of accessibility. Despite a lower productivity in terms of volume, northern stands are expected to produce wood of higher quality, which may make these areas attractive for management and(More)
Spring temperature is a major limiting factor at the beginning of the growing season, the timing of growth initiation can increase by about 7 days/°C. During the growing season, impacts of climate variables on radial growth are similar along an altitudinal gradient. Altitude is considered as an important factor affecting tree growth in mountain forest(More)
We determined the cambial sensitivity and quantified the anatomical differences in xylem of Abies balsamea (L.) Mill. seedlings subjected to artificial defoliation to simulate spruce budworm feeding. Defoliation was performed by removing two-thirds of needles of all current-year shoots for up to four consecutive growth cycles to account for inter- and(More)
Warming and drought will occur with increased frequency and intensity at high latitudes in the future. How heat and water stress can influence tree mortality is incompletely understood. The aim of this study was to evaluate how carbon resources, stem hydraulics, and wood anatomy and density determine the ability of black spruce saplings to survive daytime(More)