Learn More
Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced(More)
Healthy aging is thought to reflect the combined influence of environmental factors (lifestyle choices) and genetic factors. To explore the genetic contribution, we undertook a genome-wide association study of exceptional longevity (EL) in 1055 centenarians and 1267 controls. Using these data, we built a genetic model that includes 150 single-nucleotide(More)
Long-living individuals (LLIs) are used to study exceptional longevity. A number of genetic variants have been found associated in LLIs to date, but further identification of variants would improve knowledge on the mechanisms regulating the rate of aging. Therefore, we performed a genome-wide association study on 410 LLIs and 553 young control individuals(More)
A number of potential candidate genes in a variety of biological pathways have been associated with longevity in model organisms. Many of these genes have human homologs and thus have the potential to provide insights into human longevity. Recently, several studies suggested that FOXO3A functions as a key bridge for various signaling pathways that influence(More)
Mutations in any of the genes encoding the alpha, beta or gamma-sarcoglycan components of dystrophin-associated glycoproteins result in both sporadic and familial cases of either limb-girdle muscular dystrophy or severe childhood autosomal recessive muscular dystrophy. The collective name 'sarcoglycanopathies' has been proposed for these forms. We report(More)
Although survival to old age is known to have strong environmental and behavioral components, mortality differences between social groups tend to diminish or even disappear at older ages. Hypothesizing that surviving to extreme old age entails a substantial familial predisposition for longevity, we analyzed the pedigrees of 444 centenarian families in the(More)
Substantial evidence supports the familial aggregation of exceptional longevity. The existence of rare families demonstrating clustering for this phenotype suggests that a genetic etiology may be an important component. Previous attempts at localizing loci predisposing for exceptional longevity have been limited to association studies of candidate gene(More)
We previously reported a genomewide linkage study for human longevity using 308 long-lived individuals (LLI) (centenarians or near-centenarians) in 137 sibships and identified statistically significant linkage within chromosome 4 near microsatellite D4S1564. This interval spans 12 million bp and contains approximately 50 putative genes. To identify the(More)
Bayesian networks are powerful instruments to learn genetic models from association studies data. They are able to derive the existing correlation between genetic markers and phenotypic traits and, at the same time, to find the relationships between the markers themselves. However, learning Bayesian networks is often non-trivial due to the high number of(More)
Epidemiological studies have demonstrated that the Mediterranean diet, which is rich in resveratrol, is associated with a significantly reduced risk of cardiovascular disease. However, the molecular mechanisms that underlie the beneficial effects of resveratrol on cardiovascular function remain incompletely understood. Therefore, we set out to identify the(More)