Learn More
Pharmacological sodium nitrate supplementation has been reported to reduce the O2 cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2 cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind,(More)
The purpose of this study was to elucidate the mechanistic bases for the reported reduction in the O(2) cost of exercise following short-term dietary nitrate (NO(3)(-)) supplementation. In a randomized, double-blind, crossover study, seven men (aged 19-38 yr) consumed 500 ml/day of either nitrate-rich beet root juice (BR, 5.1 mmol of NO(3)(-)/day) or(More)
PURPOSE Dietary nitrate supplementation has been shown to reduce the O2 cost of submaximal exercise and to improve high-intensity exercise tolerance. However, it is presently unknown whether it may enhance performance during simulated competition. The present study investigated the effects of acute dietary nitrate supplementation on power output (PO), VO2,(More)
Dietary nitrate (NO(3)(-)) supplementation with beetroot juice (BR) over 4-6 days has been shown to reduce the O(2) cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic(More)
PURPOSE We tested the hypothesis that a 3-min all-out cycling test would provide a measure of peak oxygen uptake (VO2peak) and estimate the maximal steady-state power output. METHODS Eleven habitually active subjects performed a ramp test, three 3-min all-out tests against a fixed resistance, and two further submaximal tests lasting up to 30 min, 15 W(More)
PURPOSE We tested the hypothesis that the power output attained at the end of a 3-min all-out cycling test would be equivalent to critical power. METHODS Ten habitually active subjects performed a ramp test, two 3-min all-out tests against a fixed resistance to establish the end-test power (EP) and the work done above the EP (WEP), and five constant-work(More)
Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1–3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists(More)
It has recently been reported that dietary nitrate (NO(3)(-)) supplementation, which increases plasma nitrite (NO(2)(-)) concentration, a biomarker of nitric oxide (NO) availability, improves exercise efficiency and exercise tolerance in healthy humans. We hypothesized that dietary supplementation with L-arginine, the substrate for NO synthase (NOS), would(More)
For high-intensity muscular exercise, the time-to-exhaustion (t) increases as a predictable and hyperbolic function of decreasing power (P) or velocity (V ). This relationship is highly conserved across diverse species and different modes of exercise and is well described by two parameters: the "critical power" (CP or CV), which is the asymptote for power(More)
Dietary supplementation with beetroot juice (BR) has been shown to reduce resting blood pressure and the O(2) cost of submaximal exercise and to increase tolerance to high-intensity cycling. We tested the hypothesis that the physiological effects of BR were consequent to its high NO(3)(-) content per se, and not the presence of other potentially bioactive(More)