Learn More
Pharmacological sodium nitrate supplementation has been reported to reduce the O2 cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2 cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind,(More)
The purpose of this study was to elucidate the mechanistic bases for the reported reduction in the O(2) cost of exercise following short-term dietary nitrate (NO(3)(-)) supplementation. In a randomized, double-blind, crossover study, seven men (aged 19-38 yr) consumed 500 ml/day of either nitrate-rich beet root juice (BR, 5.1 mmol of NO(3)(-)/day) or(More)
PURPOSE Dietary nitrate supplementation has been shown to reduce the O2 cost of submaximal exercise and to improve high-intensity exercise tolerance. However, it is presently unknown whether it may enhance performance during simulated competition. The present study investigated the effects of acute dietary nitrate supplementation on power output (PO), VO2,(More)
PURPOSE We tested the hypothesis that a 3-min all-out cycling test would provide a measure of peak oxygen uptake (VO2peak) and estimate the maximal steady-state power output. METHODS Eleven habitually active subjects performed a ramp test, three 3-min all-out tests against a fixed resistance, and two further submaximal tests lasting up to 30 min, 15 W(More)
PURPOSE We tested the hypothesis that the power output attained at the end of a 3-min all-out cycling test would be equivalent to critical power. METHODS Ten habitually active subjects performed a ramp test, two 3-min all-out tests against a fixed resistance to establish the end-test power (EP) and the work done above the EP (WEP), and five constant-work(More)
Dietary nitrate (NO(3)(-)) supplementation with beetroot juice (BR) over 4-6 days has been shown to reduce the O(2) cost of submaximal exercise and to improve exercise tolerance. However, it is not known whether shorter (or longer) periods of supplementation have similar (or greater) effects. We therefore investigated the effects of acute and chronic(More)
Exercise in hypoxia is associated with reduced muscle oxidative function and impaired exercise tolerance. We hypothesised that dietary nitrate supplementation (which increases plasma [nitrite] and thus NO bioavailability) would ameliorate the adverse effects of hypoxia on muscle metabolism and oxidative function. In a double-blind, randomised crossover(More)
Recent studies have suggested that dietary inorganic nitrate (NO3 −) supplementation may improve muscle efficiency and endurance exercise tolerance but possible effects during team sport-specific intense intermittent exercise have not been examined. We hypothesized that NO3 − supplementation would enhance high-intensity intermittent exercise performance.(More)
PURPOSE The critical power (CP) model includes two constants: the CP and the W' [P = (W' / t) + CP]. The W' is the finite work capacity available above CP. Power output above CP results in depletion of the W' complete depletion of the W' results in exhaustion. Monitoring the W' may be valuable to athletes during training and competition. Our purpose was to(More)
It has recently been reported that dietary nitrate (NO(3)(-)) supplementation, which increases plasma nitrite (NO(2)(-)) concentration, a biomarker of nitric oxide (NO) availability, improves exercise efficiency and exercise tolerance in healthy humans. We hypothesized that dietary supplementation with L-arginine, the substrate for NO synthase (NOS), would(More)