Learn More
The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions. A metagenome sequence was(More)
Little is known about the importance and/or mechanisms of biological mineral oxidation in sediments, partially due to the difficulties associated with culturing mineral-oxidizing microbes. We demonstrate that electrochemical enrichment is a feasible approach for isolation of microbes capable of gaining electrons from insoluble minerals. To this end we(More)
To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides, an organohalide reducer, and Methanospirillum, a hydrogenotrophic methanogen,(More)
Electromicrobiology is a subdiscipline of microbiology that involves extracellular electron transfer (EET) to (or from) insoluble electron active redox compounds located outside the outer membrane of the cell. These interactions can often be studied using electrochemical techniques which have provided novel insights into microbial physiology in recent(More)
The interpretation of high-throughput gene expression data for non-model microorganisms remains obscured because of the high fraction of hypothetical genes and the limited number of methods for the robust inference of gene networks. Therefore, to elucidate gene-gene and gene-condition linkages in the bioremediation-important genus Dehalococcoides, we(More)
  • 1