Annemiek Vink

Learn More
Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance(More)
With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and(More)
Anaerobic capacity (AnC) can be estimated by subtracting VO (2) consumed from VO (2) demand, which can be estimated from multiple submaximal exercise bouts or by gross efficiency (GE), requiring one submaximal bout. This study compares AnC using the MAOD and GE method. The precision of estimated VO (2) demand and AnC, determined by MAOD using 3 power output(More)
Proposed harvesting of polymetallic nodules in the Central Tropical Pacific will generate plumes of suspended sediment which are anticipated to be ecologically harmful. While the deep sea is low in energy, it also can be highly turbulent, since the vertical density gradient which suppresses turbulence is weak. The ability to predict the impact of deep(More)
  • 1