Annelise Machado Gomes de Paiva

Learn More
Blockade of acetylcholine release by botulinum neurotoxin type A at the neuromuscular junction induces the formation of an extensive network of nerve-terminal sprouts. By repeated in vivo imaging of N-(3-triethyl ammonium propyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide uptake into identified nerve endings of the mouse sternomastoid muscle after a(More)
In order to gain insights into the steps (binding, uptake, intracellular effect) which differ in the inhibitory actions of tetanus toxin and botulinum neurotoxins types A or B, their temperature dependencies were investigated at identified cholinergic and non-cholinergic synapses in Aplysia. Upon lowering the temperature from 22 degrees C to 10 degrees C,(More)
Although botulinum neurotoxin (BoNT) types A and B and tetanus toxin (TeTx) are specific inhibitors of transmitter release whose light chains contain a zinc-binding motif characteristic of metalloendoproteases, only the latter two proteolyse synaptobrevin. Chelation of zinc or its readdition at high concentration hindered blockade of neuromuscular(More)
Botulinum neurotoxin type A consists of a disulfide-linked light and heavy chain, with an intradisulfide present within the C-terminal half of the latter. The functional consequences of reducing these bonds and alkylating the thiols were investigated. Modification of free cysteine residues had no effect on the toxicity in mouse bioassays or on acetylcholine(More)
Arterial hypertension (AH) is a highly prevalent disease, and is a major cardiovascular (CV) risk factor 1 ; therefore, achieving blood pressure (BP) control goals as soon as possible is paramount to reduce that risk 2. That means that approximately 70% of hypertensive individuals will need antihypertensive drug combination 3 , and up to 30% of hypertensive(More)
The respective neuroselective actions of botulinum type A (BoNT) and tetanus (TeTx) neurotoxins on cholinergic and non-cholinergic synapses of Aplysia are mainly due to differences in their extracellular neuronal targetting. Further information was gained on this neuroselectivity by examining the temperature dependencies of binding, internalization and(More)
  • 1