Anneke I. den Hollander

Learn More
Leber congenital amaurosis (LCA) is the most severe retinal dystrophy causing blindness or severe visual impairment before the age of 1 year. Linkage analysis, homozygosity mapping and candidate gene analysis facilitated the identification of 14 genes mutated in patients with LCA and juvenile retinal degeneration, which together explain approximately 70% of(More)
Ophthalmological and molecular genetic studies were performed in a consanguineous family with individuals showing either retinitis pigmentosa (RP) or cone-rod dystrophy (CRD). Assuming pseudodominant (recessive) inheritance of allelic defects, linkage analysis positioned the causal gene at 1p21-p13 (lod score 4.22), a genomic segment known to harbor the(More)
Mutations in the crumbs homologue 1 (CRB1) gene cause a specific form of retinitis pigmentosa (RP) that is designated "RP12" and is characterized by a preserved para-arteriolar retinal pigment epithelium (PPRPE) and by severe loss of vision at age <20 years. Because of the early onset of disease in patients who have RP with PPRPE, we considered CRB1 to be a(More)
Mutations in the Crumbs homologue 1 (CRB1) gene have been reported in patients with a variety of autosomal recessive retinal dystrophies, including retinitis pigmentosa (RP) with preserved paraarteriolar retinal pigment epithelium (PPRPE), RP with Coats-like exudative vasculopathy, early onset RP without PPRPE, and Leber congenital amaurosis (LCA). We(More)
PURPOSE Leber congenital amaurosis (LCA) is an early-onset inherited disorder of childhood blindness characterized by visual impairment noted soon after birth. Variants in at least six genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1) have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa (RP). Genetically(More)
Nonsyndromic recessive retinal dystrophies cause severe visual impairment due to the death of photoreceptor and retinal pigment epithelium cells. These diseases until recently have been considered to be incurable. Molecular genetic studies in the last two decades have revealed the underlying molecular causes in approximately two-thirds of patients. The(More)
Molecular diagnostics for patients with retinitis pigmentosa (RP) has been hampered by extreme genetic and clinical heterogeneity, with 52 causative genes known to date. Here, we developed a comprehensive next-generation sequencing (NGS) approach for the clinical molecular diagnostics of RP. All known inherited retinal disease genes (n = 111) were captured(More)
Bestrophin-1 is an integral membrane protein, encoded by the BEST1 gene, which is located in the basolateral membrane of the retinal pigment epithelium. The bestrophin-1 protein forms a Ca(2+) activated Cl(-) channel and is involved in the regulation of voltage-dependent Ca(2+) channels. In addition, bestrophin-1 appears to play a role in ocular(More)
Despite rapid advances in the identification of genes involved in disease, the predictive power of the genotype remains limited, in part owing to poorly understood effects of second-site modifiers. Here we demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein-1 like), a ciliary gene mutated in(More)
Mutations in the Crumbs homologue 1 (CRB1) gene cause autosomal recessive retinitis pigmentosa (arRP) and autosomal Leber congenital amaurosis (arLCA). The crumbs (crb) gene was originally identified in Drosophila and encodes a large transmembrane protein required for maintenance of apico-basal cell polarity and adherens junction in embryonic epithelia.(More)