Anne W Thompson

Learn More
Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular(More)
Symbioses between nitrogen (N)(2)-fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen acquisition in N-limited environments. Recently, a widely distributed planktonic uncultured nitrogen-fixing cyanobacterium (UCYN-A) was found to have unprecedented genome reduction, including the lack of oxygen-evolving photosystem II and the(More)
Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a(More)
Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification(More)
Prochlorococcus and Synechococcus are the two most abundant marine cyanobacteria. They represent a significant fraction of the total primary production of the world oceans and comprise a major fraction of the prey biomass available to phagotrophic protists. Despite relatively rapid growth rates, picocyanobacterial cell densities in open-ocean surface waters(More)
Marine nitrogen-fixing cyanobacteria play a central role in the open-ocean microbial community by providing fixed nitrogen (N) to the ocean from atmospheric dinitrogen (N2 ) gas. Once thought to be dominated by one genus of cyanobacteria, Trichodesmium, it is now clear that marine N2 -fixing cyanobacteria in the open ocean are more diverse, include several(More)
Symbiotic interactions between nitrogen-fixing prokaryotes and photosynthetic eukaryotes are an integral part of biological nitrogen fixation at a global scale. One of these partnerships involves the cyanobacterium UCYN-A, which has been found in partnership with an uncultivated unicellular prymnesiophyte alga in open-ocean and coastal environments.(More)
The three human D-type cyclins, cyclin D1, D2 and D3 share the ability to bind to and activate cdk4 and 6. MMTV-cyclin D1 transgenic mice develop mainly adenocarcinoma, while MMTV-cyclin D2 mice show a lack of alveologenesis during pregnancy and only develop carcinoma at low frequency. The effect of cyclin D3 overexpression in mammary glands remains(More)
Mice carrying an albumin-urokinase type plasminogen activator transgene (AL-uPA) develop liver disease secondary to uPA expression in hepatocytes. Transgene-expressing parenchyma is replaced gradually by clones of cells that have deleted transgene DNA and therefore are not subject to uPA-mediated damage. Diseased liver displays several abnormalities,(More)
Results from the Intergovernmental Panel on Climatic Change (IPCC) tropospheric photochemical model intercomparison (PhotoComp) are presented with a brief discussion of the factors that may contribute o differences inthe modeled behaviors ofHO x cycling and the accompanying 03 tendencies. PhotoComp was a tightly controlled model experiment inwhich the IPCC(More)