Learn More
Liposome stability during and after covalent coupling of Fab' antibody fragments was investigated. Large unilamellar vesicles containing entrapped 5(6)-carboxyfluorescein (CF) as a marker for liposomal integrity were prepared by extrusion through polycarbonate membranes. N-[4-(p-Maleimidophenyl)-butyryl]phosphatidylethanolamine (MPB-PE) was employed as a(More)
A broad spectrum detection platform that provides sequence level resolution of target regions would have a significant impact in public health, case management, and means of expanding our understanding of the etiology of diseases. A previously developed respiratory pathogen microarray (RPM v.1) demonstrated the capability of this platform for this purpose.(More)
An immunosensor operating in continuous flow and capable of detecting low molecular weight antigens is described. The approach differs from previously described continuous flow assays by not requiring incubation steps or the introduction of additional reagents following the loading of the sample into the system. Detection of the antigen is rapid, occurring(More)
This study investigates the effect of antibody density on the kinetics of a solid-phase displacement immunoassay. Conducted in flow under nonequilibrium conditions, the assay utilizes a monoclonal antibody to the cocaine metabolite benzoylecgonine, which has been immobilized onto Sepharose beads and saturated with fluorophore labeled antigen. Displacement(More)
We have developed the theoretical framework for a displacement immunoassay conducted in flow under nonequilibrium conditions. Using a repetitive displacement technique, we determined the displacement rate and apparent dissociation rate constant at different flow rates. Our data suggest that the kinetics are best described by a first-order function. The(More)
A synthetic scheme has been developed for the preparation of a dye-labeled analog of polychlorinated biphenyls. The reaction of 2,3,5-trichlorophenol with 3-bromopropylamine hydrobromide under basic conditions was used to introduce a free primary amine group into the parent compound by formation of a stable ether linkage. Reaction of this amine with the(More)
A compact membrane-based displacement immunoassay has been designed for rapid detection of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) at high femtomole levels. The system consists of activated porous membranes, onto which either TNT or RDX antibodies are immobilized, that are inserted into microreactor(More)
Metagenomic and metaproteomic analyses were utilized to determine the composition and function of complex air-water interface biofilms sampled from the hulls of two US Navy destroyers. Prokaryotic community analyses using PhyloChip-based 16S rDNA profiling revealed two significantly different and taxonomically rich biofilm communities (6,942 taxa) in which(More)
The large-scale identification and quantitation of proteins via nanoliquid chromatography (LC)-tandem mass spectrometry (MS/MS) offers a unique opportunity to gain unprecedented insight into the microbial composition and biomolecular activity of true environmental samples. However, in order to realize this potential for marine biofilms, new methods of(More)
A highly sensitive, dual-analyte detection system using capillary-based immunosensors has been designed for explosive detection. This model system consists of two capillaries, one coated with antibodies specific for 2,4,6-trinitrotoluene (TNT) and the other specific for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) combined into a single device. The fused(More)