Learn More
BACKGROUND The efficacy of tamoxifen therapy for the treatment of breast cancer varies widely among individuals. Plasma concentrations of the active tamoxifen metabolite endoxifen are associated with the cytochrome P450 (CYP) 2D6 genotype. We examined the effects of concomitant use of selective serotonin reuptake inhibitor antidepressants, which are CYP2D6(More)
The mammalian defense system can respond to a variety of threats, but this capability is not just a simple alarm system for triggering antigen-presenting cells and initiating cellular immunity. Instead, the body is an integrated system in which nearly every cell type can relay the alarm through the production of chemokines, which recruit specific(More)
OBJECTIVES To evaluate the relationships among measures of hot flushes, perceived hot flush interference, sleep disturbance, and measures of quality of life while controlling for potential covariates (patient and treatment variables). METHODS Breast cancer survivors (n = 395) due to receive aromatase inhibitor therapy provided demographic information,(More)
BACKGROUND AND OBJECTIVES N-Desmethyltamoxifen (NDM), a major primary metabolite of tamoxifen, is hydroxylated by cytochrome P450 (CYP) 2D6 to yield endoxifen. Because of its high antiestrogenic potency, endoxifen may play an important role in the clinical activity of tamoxifen. We conducted a prospective trial in 158 patients with breast cancer who were(More)
BACKGROUND Tamoxifen is biotransformed to the potent anti-estrogen, endoxifen, by the cytochrome P450 (CYP) 2D6 enzyme. CYP2D6 genetic variation and inhibitors of the enzyme markedly reduce endoxifen plasma concentrations in tamoxifen-treated patients. Using a North Central Cancer Treatment Group adjuvant tamoxifen trial, we performed a comprehensive(More)
DNA polymorphisms have been identified in the genes encoding a number of the cytochrome P450 (CYP) enzymes, leading to wide interindividual variation in drug clearance. CYP2D6 metabolizes a significant number of clinically used medications, and genetic variants of the CYP2D6 isozyme that result in varying levels of metabolic activity are of clinical(More)
The T cell-mediated lung inflammation that is associated with allergic asthma is characterized mainly by massive eosinophil infiltration, which induces airway injury and the subsequent late-phase reactivity. Because Th2 cells are often isolated from asthmatic subjects, these cells are postulated to play a role in asthma pathogenesis. We report that(More)
The selective estrogen receptor modulator tamoxifen is routinely used for treatment and prevention of estrogen-receptor-positive breast cancer. Studies of tamoxifen adherence suggest that over half of patients discontinue treatment before the recommended 5 years. We hypothesized that polymorphisms in CYP2D6, the enzyme responsible for tamoxifen activation,(More)
Nondepleting anti-CD4 Abs have been used in vivo to induce Ag-specific immunological tolerance in Th1 responses, including tissue allograft rejection and autoimmune diabetes. To examine whether this Ab (YTS177.9) acts by provoking a Th2 shift, we tested the effect in a mouse model of allergic lung inflammation. Interestingly, nondepleting anti-CD4 treatment(More)
Airway inflammation associated with asthma is characterized by massive infiltration of eosinophils, mediated in part by specific chemoattractant factors produced in the lung. Allergen-specific Th2 cells appear to play a central role in asthma; for example, adoptively transferred Th2 cells induced lung eosinophilia associated with induction of specific(More)