Learn More
The initiation of mammalian puberty requires an increase in pulsatile release of GnRH from the hypothalamus. This increase is brought about by coordinated changes in transsynaptic and glial-neuronal communication. As the neuronal and glial excitatory inputs to the GnRH neuronal network increase, the transsynaptic inhibitory tone decreases, leading to the(More)
Sexual development and mature reproductive function are controlled by a handful of neurones that, located in the basal forebrain, produce the decapeptide luteinizing hormone releasing hormone (LHRH). LHRH is released into the portal system that connects the hypothalamus to the pituitary gland and act on the latter to stimulate the synthesis and release of(More)
Our aim was to study the inhibitory and facilitatory factors possibly accounting for the undetectable activity of the GnRH pulse generator in late fetal life in vitro and its awakening in early postnatal life. Gamma aminobutyric acid (GABA(A)) receptor antagonism using SR 95 531 did not cause any secretory pulse in fetal explants, whereas a significant(More)
It has been earlier proposed that oxytocin could play a facilitatory role in the preovulatory LH surge in both rats and humans. We here provide evidence that oxytocin also facilitates sexual maturation in female rats. The administration of an oxytocin antagonist for 6 d to immature female rats decreased GnRH pulse frequency ex vivo and delayed the age at(More)
This article discusses the potential mechanisms by which hypothalamic hamartomas (HHs) are formed and cause precocious puberty. The hypothesis is presented suggesting that HHs accelerate sexual development by producing bioactive substances that mimic - in an accelerated time-course - the cascade of events underlying the normal initiation of puberty. It is(More)
Female sexual maturation requires erythroblastosis B (erbB)4 signaling in hypothalamic astrocytes; however, the mechanisms by which erbB4 contributes to this process are incompletely understood. Here we show that SynCAM1, a synaptic adhesion molecule with signaling capabilities, is not only expressed highly in neurons, but also in hypothalamic astrocytes(More)
Under physiological conditions, factors affecting the genetic control of hypothalamic functions are predominant in determining the individual variations in timing of pubertal onset. In pathological conditions, however, these variations can involve different genetic susceptibility and the interaction of environmental factors. The high incidence of precocious(More)
Sex steroids and thyroid hormones play a key role in the development of the central nervous system. The critical role of these hormonal systems may explain the sensitivity of the hypothalamus, the cerebral cortex, and the hippocampus to endocrine-disrupting chemicals (EDC). This review examines the evidence for endocrine disruption of glial-neuronal(More)
The involvement of environmental factors such as endocrine disrupting chemicals (EDCs) in the timing of onset of puberty is suggested by recent changes in age at onset of puberty and pattern of distribution that are variable among countries, as well as new forms of sexual precocity after migration. However, the evidence of association between early or late(More)
Excitatory amino acids, glutamate in particular, have a marked stimulatory effect on the reproductive axis, particularly at puberty. Glutamate, N-methyl-D-aspartate (NMDA), and kainate stimulate gonadotropin-releasing hormone (GnRH) secretion in immature mammals and NMDA receptor stimulation results in precocious puberty in rats and monkeys. Puberty is(More)