#### Filter Results:

#### Publication Year

2006

2016

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra introduced by Lam and the… (More)

A new fermionic formula for the unrestricted Kostka polynomials of type A (1) n−1 is presented. This formula is different from the one given by Hatayama et al. and is valid for all crystal paths based on Kirillov–Reshetihkin modules, not just for the symmetric and anti-symmetric case. The fermionic formula can be interpreted in terms of a new set of… (More)

It has previously been shown that, at least for non-exceptional Kac–Moody Lie algebras, there is a close connection between Demazure crystals and tensor products of Kirillov–Reshetikhin crystals. In particular, certain Demazure crystals are isomorphic as classical crystals to tensor products of Kirillov–Reshetikhin crystals via a canonically chosen… (More)

We consider generalizations of Schützenberger's promotion operator on the set L of linear extensions of a finite poset of size n. This gives rise to a strongly connected graph on L. By assigning weights to the edges of the graph in two different ways, we study two Markov chains, both of which are irreducible. The stationary state of one gives rise to the… (More)

In [14], the analogue of the promotion operator on crystals of type A under a generalization of the bijection of Kerov, Kirillov and Reshetikhin between crystals (or Littlewood– Richardson tableaux) and rigged configurations was proposed. In this paper, we give a proof of this conjecture. This shows in particular that the bijection between tensor products… (More)

In this paper, we extend work of the first author on a crystal structure on rigged configurations of simply-laced type to all non-exceptional affine types using the technology of virtual rigged configurations and crystals. Under the bijection between rigged configurations and tensor products of Kirillov–Reshetikhin crystals specialized to a single tensor… (More)

- Gwen Mckinley Advisor, Anne Schilling
- 2015

We start with a deck of cards labeled 1 through n, arranged in an arbitrary permutation. At each stage, we move the card on the top of the deck to the position in the deck corresponding to its number. We ask the following questions: for a given n, what is the longest sequence of moves possible? Does every sequence of moves terminate? Considering all n!… (More)