Learn More
The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect(More)
A clinostat is a device often used in gravitational biology studies. Selecting an appropriate speed of rotation, however, is a frequently debated topic, particularly for suspended cells. In an attempt to define the necessary criteria for determining an acceptable revolution speed, the primary forces governing particle behavior during clinorotation--gravity,(More)
Theoretical investigations of the membrane-solution interface predict different effects of gravity on vertically and horizontally oriented planar membranes. Single channel events of gramicidin incorporated into phosphatidylserine planar bilayer membranes were measured in 0.1 M KCl solution, pH 7, at room temperature. The potential difference across the(More)
Preparing the German Spacelab Mission D-2 project "Gravity Perception and Neuronal Plasticity"--STATEX II--ground based experiments have been performed with larvae of the amphibian vertebrate Xenopus laevis Daud. to study the reactions to different levels of acceleration forces and profiles. The larvae have been exposed to accelerations of up to 5 g for(More)
The paper describes an investigation of the influence of gravity on the early differentiation of gravity receptors in Xenopus embryos and larvae. There is evidence that the expression of crystals in the saccus endolymphaticus was statistically greater when the embryos developed in near weightlessness (hypogravity) than on earth. The function of these(More)
The development of embryonic and larval stages of the South African Toad Xenopus laevis D, was investigated in hyper-g up to 5 g (centrifuge), in simulated 0 g (fast-rotating clinostat), in alternating low g, hyper-g (parabolic flights) and in microgravity (Spacelab missions D1, D-2). The selected developmental stages are assumed to be very sensitive to(More)
The paper sums up results of a 7-day space flight experiment (D-l-Mission-BW-STA 00-STATEX) using growing frog embryos and larvae (Xenopus laevis) as a model system. Evaluation of photographs taken from the surface of sectioned deep-frozen objects, and micrographs using TEM and SEM show no aberrations in the shape, size, position, or respective electron(More)
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1.(More)
Aboard the German-Spacelab-Mission D-2 the project "Gravity Perception and Neuronal Plasticity (STATEX II)" was performed. STATEX is for STATolith EXperiment. Objects were growing tadpoles of the South African Toad (Xenopus laevis D.) and a juvenile cichlid fish (Oreochromis mossambicus). The results give a broader base for the understanding of how(More)