Learn More
The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect(More)
Preparing the German Spacelab Mission D-2 project "Gravity Perception and Neuronal Plasticity"--STATEX II--ground based experiments have been performed with larvae of the amphibian vertebrate Xenopus laevis Daud. to study the reactions to different levels of acceleration forces and profiles. The larvae have been exposed to accelerations of up to 5 g for(More)
The paper sums up results of a 7-day space flight experiment (D-l-Mission-BW-STA 00-STATEX) using growing frog embryos and larvae (Xenopus laevis) as a model system. Evaluation of photographs taken from the surface of sectioned deep-frozen objects, and micrographs using TEM and SEM show no aberrations in the shape, size, position, or respective electron(More)
Application of the Gouy-Chapman-Debye-Hückel (GCDH) theory to a model membrane in contact with electrolytes of various concentrations and composition predict density variations within an interfacial layer. Assuming that on cellular dimensions hydrodynamics can be applied (the objections are briefly discussed) two types of gravity effects can be defined, 1.(More)
Aboard the German-Spacelab-Mission D-2 the project "Gravity Perception and Neuronal Plasticity (STATEX II)" was performed. STATEX is for STATolith EXperiment. Objects were growing tadpoles of the South African Toad (Xenopus laevis D.) and a juvenile cichlid fish (Oreochromis mossambicus). The results give a broader base for the understanding of how(More)
Aquatic animals have almost no body weight related proprioception for spatial orientation. Xenopus larvae, like fish, maintain their attitude in water by continuous correction with their fin(s). For these reasons a special performance of the equilibrium system compared to terrestrial animals is necessary. Evidently fish therefore have more compact(More)
O ne possibility of analyzing the formation of organisms is the investigation of functional ripening of cells and organs in a stimulus-free environment. For example, the optical centers of vertebrates attain their final functional performance only under stimulus from the optical environment. The information content of the genome is evidently not sufficient(More)
Theoretical investigations of the membrane-solution interface predict different effects of gravity on vertically and horizontally oriented planar membranes. Single channel events of gramicidin incorporated into phosphatidylserine planar bilayer membranes were measured in 0.1 M KCl solution, pH 7, at room temperature. The potential difference across the(More)