Learn More
The three-dimensional structure of a protein can be modeled by a set of polyhedra drawn around its atoms or residues. The tessellation invented by Voronoi in 1908, and other tessellations of space derived from it, provide versatile representations of three-dimensional structures. In recent years, they have been used to investigate a series of issues(More)
MOTIVATION Partially and wholly unstructured proteins have now been identified in all kingdoms of life--more commonly in eukaryotic organisms. This intrinsic disorder is related to certain critical functions. Apart from their fundamental interest, unstructured regions in proteins may prevent crystallization. Therefore, the prediction of disordered regions(More)
MOTIVATION Knowledge of the oligomeric state of a protein is often essential for understanding its function and mechanism. Within a protein crystal, each protein monomer is in contact with many others, forming many small interfaces and a few larger ones that are biologically significant if the protein is a homodimer in solution, but not if the protein is(More)
Most proteins fulfill their functions through the interaction with other proteins. Because most of these interactions are transitory, they are difficult to detect experimentally, and obtaining the structure of the complex is generally not possible. Consequently, prediction of the existence of these interactions and of the structure of the resulting complex(More)
The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring(More)
MOTIVATION Protein-protein complexes are known to play key roles in many cellular processes. However, they are often not accessible to experimental study because of their low stability and difficulty to produce the proteins and assemble them in native conformation. Thus, docking algorithms have been developed to provide an in silico approach of the problem.(More)
Structural genomics aims at the establishment of a universal protein-fold dictionary through systematic structure determination either by NMR or X-ray crystallography. In order to catch up with the explosive amount of protein sequence data, the structural biology laboratories are spurred to increase the speed of the structure-determination process. To(More)
The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that(More)
Follicle-stimulating hormone (FSH) is a central regulator of male and female reproductive function. Over the last decade, there has been a growing perception of the complexity associated with FSH-induced cellular signaling. It is now clear that the canonical Gs/cAMP/PKA pathway is not the sole mechanism that must be considered in FSH biological actions. In(More)
A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a(More)