Learn More
Ten years after the idea of hydrophobic cluster analysis (HCA) was conceived and first published, theoretical and practical experience has shown this unconventional method of protein sequence analysis to be particularly efficient and sensitive, especially with families of sequences sharing low levels of sequence identity. This extreme sensitivity has made(More)
MOTIVATION Partially and wholly unstructured proteins have now been identified in all kingdoms of life--more commonly in eukaryotic organisms. This intrinsic disorder is related to certain critical functions. Apart from their fundamental interest, unstructured regions in proteins may prevent crystallization. Therefore, the prediction of disordered regions(More)
Fifty-two 3D structures of Ig-like domains covering the immunoglobulin fold family (IgFF) were compared and classified according to the conservation of their secondary structures. Members of the IgFF are distantly related proteins or evolutionarily unrelated proteins with a similar fold, the Ig fold. In this paper, a multiple structural alignment of the(More)
The three-dimensional structure of a protein can be modeled by a set of polyhedra drawn around its atoms or residues. The tessellation invented by Voronoi in 1908, and other tessellations of space derived from it, provide versatile representations of three-dimensional structures. In recent years, they have been used to investigate a series of issues(More)
MOTIVATION Knowledge of the oligomeric state of a protein is often essential for understanding its function and mechanism. Within a protein crystal, each protein monomer is in contact with many others, forming many small interfaces and a few larger ones that are biologically significant if the protein is a homodimer in solution, but not if the protein is(More)
The important role of the serine/threonine protein phosphatase 2A (PP2A) in various cellular processes requires a precise and dynamic regulation of PP2A activity, localization, and substrate specificity. The regulation of the function of PP2A involves the reversible methylation of the COOH group of the C-terminal leucine of the catalytic subunit, which, in(More)
Understanding the mechanism of protein folding would allow prediction of the three-dimensional structure from sequence data alone. It has been shown that small proteins fold in a small number of kinetic steps and that significantly populated intermediate states exist for some of them. Studies of these intermediates have demonstrated the existence of(More)
Uteroglobin (UTG) forms a fascinating homodimeric structure that binds small- to medium-sized ligands through an internal hydrophobic cavity, located at the interface between the two monomers. Previous studies have shown that UTG fold is not limited to the UTG/CC10 family, whose sequence/structure relationships are highlighted here, but can be extended to(More)
Most proteins fulfill their functions through the interaction with other proteins. Because most of these interactions are transitory, they are difficult to detect experimentally, and obtaining the structure of the complex is generally not possible. Consequently, prediction of the existence of these interactions and of the structure of the resulting complex(More)
Predicting the three-dimensional structures of protein-protein complexes is a major challenge for computational biology. Using a Voronoi tessellation model of protein structure, we showed previously that it was possible to use an evolutionary algorithm to train a scoring function to distinguish reliably between native and non-native docking conformations.(More)