Anne Pillonnet

Learn More
We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by(More)
The evolution of the boson peak with densification at medium densification rates (up to 2.3%) in silicate glasses was followed through heat capacity measurements and low frequency Raman scattering. It is shown that the decrease of the boson peak induced by densification does not conform to that expected from a continuous medium; rather it follows a two step(More)
Hafnium dioxide (HfO 2) presents a high crystalline density which makes it attractive for host lattice activated by rare earths for applications as scintillating materials. HfO 2 powders doped with Eu (3+) or Ce (3+) luminescent ions are prepared by sol gel process. The annealing temperature and the concentration of doping ions are optimized to provide the(More)
We explore the potential of CdSe/ZnS colloidal quantum dots (QDs) as probes for their immediate dielectric environment, based on the influence of the local refractive index on the fluorescence dynamics of these nanoemitters. We first compare ensembles of quantum dots in homogeneous solutions with single quantum dots dispersed on various dielectric(More)
Two tetranuclear manganese(II) complexes {K(+)[Mn(4)(ThiaSO(2))(2)(OH)](-)} (1) and {K(+)[Mn(4)(ThiaSO(2))(2)(F)](-)} (2) have been synthesized under solvothermal conditions in methanol with p-tert-butylsulfonylcalix[4]arene (ThiaSO(2)). For both complexes, the structure has been established from single-crystal X-ray diffraction. The two complexes are best(More)
We report the successful encapsulation of colloidal quantum dots in an inorganic matrix by pulsed laser deposition. Our technique is nondestructive and thus permits the incorporation of CdSe/CdS core/shell colloidal quantum dots in an amorphous yttrium oxide matrix (Y2O3) under full preservation of the advantageous optical properties of the nanocrystals. We(More)
The coupling between Eu(3+) rare earth emitters and Al has been investigated in multilayer structures, which consist of an Eu:Y2O3 phosphor film deposited between percolated and continuous Al films. Passive buffer Y2O3 layers were deposited between phosphor and Al films with different thicknesses to analyze the role of the Eu-Al distance on the(More)
The paper reports the possible use of nanoparticles embedded in amorphous host as hetero embryos in order to grow complex crystalline phases as thin film. Demonstration is performed in the prototypical case of pyrochlore phase Gd(2)Ti(2)O(7) grown from Gd(2)O(3) nanoparticles embedded in TiO(2) matrix at low temperature. As embryos, two kinds of(More)
This contribution is a review of the luminescence and scintillation properties of nanoparticles (NP), particularly doped insulators. Luminescence spectroscopy is an appropriate tool to probe matter at the nanoscale. Luminescence is also the last stage of the scintillation process. Specific surface and structural effects occurring in NP are reported. Their(More)
Pulsed laser deposition was used to deposit aluminum thin films of various thicknesses (tAl) ranging from 5 to 40 nm and to investigate their growth process when they are deposited onto SiO2 and Y2O3. Atomic force microscopy and x-ray reflectivity measurements show that the structure of the Al films are related to the wettability properties of the(More)