Learn More
The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate(More)
Expression of the human protooncogene bcl-2 protects neural cells from death induced by many forms of stress, including conditions that greatly elevate intracellular Ca2+. Considering that Bcl-2 is partially localized to mitochondrial membranes and that excessive mitochondrial Ca2+ uptake can impair electron transport and oxidative phosphorylation, the(More)
To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated(More)
Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of(More)
Recently developed technologies have enabled multi-well measurement of O(2) consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a(More)
Bnip3 (Bcl-2/adenovirus E1B 19-kDa-interacting protein 3) is a mitochondrial BH3-only protein that contributes to cell death through activation of the mitochondrial pathway of apoptosis. Bnip3 is also known to induce autophagy, but the functional role of autophagy is unclear. In this study, we investigated the relationship between mitochondrial dysfunction(More)
The pyruvate dehydrogenase multienzyme complex (PDC) is a key regulatory point in cellular metabolism linking glycolysis to the citric acid cycle and lipogenesis. Reversible phosphorylation of the pyruvate dehydrogenase enzyme is a critical regulatory mechanism and an important point for monitoring metabolic activity. To directly determine the regulation of(More)
Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger(More)
The biochemical pathways to cell death in chronic and acute forms of neurodegeneration are poorly understood, limiting the ability to develop effective therapeutic approaches. As details of the apoptotic and necrotic pathways have been revealed, an appreciation for the decisive role that mitochondria play in life-death decisions for the cell has grown. As a(More)
Members of the thiazolidinedione (TZD) class of insulin-sensitizing drugs are extensively used in the treatment of type 2 diabetes. Pioglitazone, a member of the TZD family, has been shown to bind specifically to a protein named mitoNEET [Colca JR, McDonald WG, Waldon DJ, Leone JW, Lull JM, Bannow CA, Lund ET, Mathews WR (2004) Am J Physiol 286:E252-E260].(More)