Learn More
For several decades, the reactive gliosis that occurs after an injury to the CNS has been considered one of the major impediments to axonal regeneration. Nevertheless, recent studies have suggested that in certain conditions, reactive astrocytes may provide a permissive substratum to support axonal regrowth. The important criteria, allowing for the(More)
Substantial evidences suggest that the increased cerebral deposition, and neurotoxic action of the beta-amyloid peptide, the major constituent of senile plaques, may represent the underlying cause of the cognitive deficits observed in Alzheimer's disease. Herein, we attempted to verify this hypothesis by inducing a potential Alzheimer's-type amnesia after(More)
The myelin of the central nervous system (CNS) of the mutant mouse Shiverer is characterized by the absence of the major dense line (MDL). The intraperiod line, as seen in conventional electron micrographs and in freeze-fractured replicas, appears normal. Peripheral myelin, as seen in ventral and dorsal roots of spinal cord, is unaffected by the mutation.(More)
The sigma1 (sigma 1) receptor agonists exert potent anti-amnesic effects, as they apparently block the learning impairments either induced by the muscarinic receptor antagonist scopolamine, the N-methyl-D-aspartate receptor antagonist dizocilpine or inherently due to the age-related deficits in senescence-accelerated mice. We recently described the amnesia(More)
A high affinity [3H]thienyl-phencyclidine ([3H]TCP) binding and its similarity to that of [3H]phencyclidine ([3H]PCP) have been demonstrated on whole rat brain homogenates. We now describe the regional distribution of the [3H]TCP binding sites in the rat brain with fixed sections and frozen slide-mounted sections visualized by autoradiography and with(More)
We have recently shown that tanycytes, a particular type of glial cell that has morphological and biochemical similarities with radial glial cells, constitute a preferential support for the regeneration of lesioned neurohypophysial axons. The present study was designed to explore the possible neurotrophic role of tanycytes in vitro. Glial cells derived from(More)
The NT2 cell line, which was derived from a human teratocarcinoma, exhibits properties that are characteristic of a committed neuronal precursor at an early stage of development. NT2 cells can be induced by retinoic acid to differentiate in vitro into postmitotic central nervous system (CNS) neurons (NT2-N cells). The commitment of NT2-N cells to a stable(More)
The International Campaign for Cures of Spinal Cord Injury Paralysis established a panel tasked with reviewing the methodology for clinical trials for spinal cord injury (SCI), and making recommendations on the conduct of future trials. This is the fourth of four papers. Here, we examine the phases of a clinical trial program, the elements, types, and(More)
The lack of axonal regeneration in the injured adult mammalian spinal cord leads to permanent functional disabilities. The inability of neurons to regenerate their axon is appreciably due to an inhospitable environment made of an astrocytic scar. We generated mice knock-out for glial fibrillary acidic protein and vimentin, the major proteins of the(More)