Anne Marie M Salapatek

Learn More
The physiological effects of glucagon-like peptide-1 (GLP-1) are of immense interest because of the potential clinical relevance of this peptide. Produced in intestinal L-cells through posttranslational processing of the proglucagon gene, GLP-1 is released from the gut in response to nutrient ingestion. Peripherally, GLP-1 is known to affect gut motility,(More)
Knowledge of how the brain achieves its diverse central control of basic physiology is severely limited by the virtual absence of appropriate cell models. Isolation of clonal populations of unique peptidergic neurons from the hypothalamus will facilitate these studies. Herein we describe the mass immortalization of mouse primary hypothalamic cells in(More)
  • C B Chan, D De Leo, +7 authors M B Wheeler
  • Diabetes
  • 2001
In pancreatic beta-cells, glucose metabolism signals insulin secretion by altering the cellular array of messenger molecules. ATP is particularly important, given its role in regulating cation channel activity, exocytosis, and events dependent upon its hydrolysis. Uncoupling protein (UCP)-2 is proposed to catalyze a mitochondrial inner-membrane H(+) leak(More)
Voltage-dependent (Kv) outward K(+) currents repolarize beta-cell action potentials during a glucose stimulus to limit Ca(2+) entry and insulin secretion. Dominant-negative "knockout" of Kv2 family channels enhances glucose-stimulated insulin secretion. Here we show that a putative Kv2.1 antagonist (C-1) stimulates insulin secretion from MIN6 insulinoma(More)
In pancreatic beta-cells, voltage-dependent K(+) (Kv) channels repolarise glucose-stimulated action potentials. Kv channels are therefore negative regulators of Ca(2+) entry and insulin secretion. We have recently demonstrated that Kv2.1 mediates the majority of beta-cell voltage-dependent outward K(+) current and now investigate the function of native(More)
In pancreatic beta-cells, voltage-dependent K(+) (Kv) channels are potential mediators of repolarization, closure of Ca(2+) channels, and limitation of insulin secretion. The specific Kv channels expressed in beta-cells and their contribution to the delayed rectifier current and regulation of insulin secretion in these cells are unclear. High-level protein(More)
The role nitric oxide (NO) plays in physiological insulin secretion has been controversial. Here we present evidence that exogenous NO stimulates insulin secretion, and that endogenous NO production occurs and is involved in the regulation of insulin release. Radioimmunoassay measurement of insulin release and a dynamic assay of exocytosis using the dye(More)
Insulin secretion is initiated by ionic events involving membrane depolarization and Ca(2+) entry, whereas exocytic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate exocytosis itself. In the present study, we characterize the interaction of the SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa)(More)
Glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone with powerful antidiabetogenic effects that are thought to be mediated by adenylyl cyclase (AC). Recently, we generated two GLP-1 receptor mutant isoforms (IC3-1 and DM-1) that displayed efficient ligand binding and the ability to promote Ca2+ mobilization from intracellular stores but lacked the(More)
Glucagon-like peptide-1 (GLP-1) acts through its G-protein-coupled receptor to enhance glucose-stimulated insulin secretion from pancreatic beta-cells. This is believed to result from modulation of at least two ion channels: ATP-sensitive K(+) (K(ATP)) channels and voltage-dependent Ca(2+) channels. Here, we report that GLP-1 receptor signaling also(More)