Learn More
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of(More)
Naturally occurring groups of muscle myosin behave differently from individual myosins or small groups commonly assayed in vitro. Here, we investigate the emergence of myosin group behavior with increasing myosin group size. Assuming the number of myosin binding sites (N) is proportional to actin length (L) (N = L/35.5 nm), we resolve in vitro motility of(More)
Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially(More)
Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether(More)
We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of furthering the understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca(2+) and crossbridge dynamics, to events at the level of the entire(More)
Although the active properties of airway smooth muscle (ASM) have garnered much modeling attention, the passive mechanical properties are not as well studied. In particular, there are important dynamic effects observed in passive ASM, particularly strain-induced fluidization, which have been observed both experimentally and in models; however, to date these(More)
We do not yet have a good quantitative understanding of how the force-velocity properties of airway smooth muscle interact with the opposing loads of parenchymal tethering and airway wall stiffness to produce the dynamics of bronchoconstriction. We therefore developed a two-dimensional computational model of a dynamically narrowing airway embedded in(More)
The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including(More)
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle.(More)
RATIONALE Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can(More)