Anne-Marie Lauzon

Learn More
Two smooth muscle myosin heavy chain isoforms differ by a 7-amino- acid insert in a flexible surface loop located near the nucleotide binding site. The non-inserted isoform is predominantly found in tonic muscle, while the inserted isoform is mainly found in phasic muscle. The inserted isoform has twice the actin-activated ATPase activity and actin filament(More)
The effects of remodeling of airway smooth muscle (SM) by hyperplasia on airway SM contractility in vivo are poorly explored. The aim of this study was to investigate the relationship between allergen-induced airway SM hyperplasia and its contractile phenotype. Brown Norway rats were sensitized with ovalbumin (OVA) or saline on day 0 and then either(More)
We present a multiscale, spatially distributed model of lung and airway behaviour with the goal of furthering the understanding of airway hyper-responsiveness and asthma. The model provides an initial computational framework for linking events at the cellular and molecular levels, such as Ca(2+) and crossbridge dynamics, to events at the level of the entire(More)
Naturally occurring groups of muscle myosin behave differently from individual myosins or small groups commonly assayed in vitro. Here, we investigate the emergence of myosin group behavior with increasing myosin group size. Assuming the number of myosin binding sites (N) is proportional to actin length (L) (N = L/35.5 nm), we resolve in vitro motility of(More)
Duchenne muscular dystrophy (DMD) is a lethal disorder caused by defects in the dystrophin gene, which leads to respiratory or cardiac muscle failure. Lack of dystrophin predisposes the muscle cell sarcolemmal membrane to mechanical damage. However, the role of myosin in this muscle weakness has been poorly addressed. In the current study, in addition to(More)
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of(More)
The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including(More)
We do not yet have a good quantitative understanding of how the force-velocity properties of airway smooth muscle interact with the opposing loads of parenchymal tethering and airway wall stiffness to produce the dynamics of bronchoconstriction. We therefore developed a two-dimensional computational model of a dynamically narrowing airway embedded in(More)
Despite the emerging use of bronchial thermoplasty in asthma therapy, the response of airway smooth muscle (ASM) to extreme temperatures is unknown. We investigated the immediate effects of exposing ASM to supraphysiologic temperatures. Isometric contractions were studied in bovine ASM before and after exposure to various thermal loads and/or pharmacologic(More)
RATIONALE Airway smooth muscle (SM) of patients with asthma exhibits a greater velocity of shortening (Vmax) than that of normal subjects, and this is thought to contribute to airway hyperresponsiveness. A greater Vmax can result from increased myosin activation. This has been reported in sensitized human airway SM and in models of asthma. A faster Vmax can(More)