Learn More
Bacterial pathogens use effector proteins to manipulate their hosts to propagate infection. These effectors divert host cell signaling pathways to the benefit of the pathogen and frequently target kinase signaling cascades. Notable pathways that are usurped include the nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), phosphatidylinositol(More)
The Tol system is a five-protein assembly parasitized by colicins and bacteriophages that helps stabilize the Gram-negative outer membrane (OM). We show that allosteric signalling through the six-bladed beta-propeller protein TolB is central to Tol function in Escherichia coli and that this is subverted by colicins such as ColE9 to initiate their OM(More)
A bacterium's ability to colonize its host highly depends on the mechanisms it has in place to withstand the host's mechanical and immunological clearance mechanisms. To avoid being removed from the organism, bacteria have to be able to quickly and effectively attach to host cells. Adhesion is also a universal prerequisite for pathogens to efficiently(More)
Vibrio parahaemolyticus is an emerging bacterial pathogen which colonizes the gastrointestinal tract and can cause severe enteritis and bacteraemia. During infection, V. parahaemolyticus primarily attaches to the small intestine, where it causes extensive tissue damage and compromises epithelial barrier integrity. We have previously described that(More)
Adhesion inhibitors that block the attachment of pathogens to host tissues may be used synergistically with or as an alternative to antibiotics. The wide-spread bacterial adhesin Multivalent Adhesion Molecule (MAM) 7 has recently emerged as a candidate molecule for a broad-spectrum adhesion inhibitor which may be used to prevent bacterial colonization of(More)
Pathogen attachment to host cells is a key process during infection, and inhibition of pathogen adhesion is a promising approach to the prevention of infectious disease. We have previously shown that multivalent adhesion molecules (MAMs) are abundant in both pathogenic and commensal bacterial species, mediate early attachment to host cells, and can(More)
Bacterial pathogens often target conserved cellular mechanisms within their hosts to rewire signaling pathways and facilitate infection. Rho GTPases are important nodes within eukaryotic signaling networks and thus constitute a common target of pathogen-mediated manipulation. A diverse array of microbial mechanisms exists to interfere with Rho GTPase(More)
Bacterial outer membrane vesicles (OMVs) are nano-sized compartments consisting of a lipid bilayer that encapsulates periplasm-derived, luminal content. OMVs, which pinch off of Gram-negative bacteria, are now recognized as a generalized secretion pathway which provides a means to transfer cargo to other bacterial cells as well as eukaryotic cells. Compared(More)