Anne M. Curtis

Learn More
Rhythmic gene expression is central to the circadian control of physiology in mammals. Transcriptional activation of Per and Cry genes by heterodimeric bHLH-PAS proteins is a key event in the feedback loop that drives rhythmicity; however, the mechanism is not clearly understood. Here we show the transcriptional coactivators and histone acetyltransferases,(More)
The diurnal variation in the incidence of myocardial infarction and stroke may reflect an influence of the molecular clock and/or the time dependence of exposure to environmental stress. The circadian variation in blood pressure and heart rate is disrupted in mice, Bmal1(-/-), Clock(mut), and Npas2(mut), in which core clock genes are deleted or mutated.(More)
Immune parameters change with time of day and disruption of circadian rhythms has been linked to inflammatory pathologies. A circadian-clock-controlled immune system might allow an organism to anticipate daily changes in activity and feeding and the associated risk of infection or tissue damage to the host. Responses to bacteria have been shown to vary(More)
Macrophages activated by the TLR4 agonist LPS undergo dramatic changes in their metabolic activity. We here show that LPS induces expression of the key metabolic regulator Pyruvate Kinase M2 (PKM2). Activation of PKM2 using two well-characterized small molecules, DASA-58 and TEPP-46, inhibited LPS-induced Hif-1α and IL-1β, as well as the expression of a(More)
BACKGROUND Up to 12% of beryllium-exposed American workers would test positive on beryllium lymphocyte proliferation test (BeLPT) screening, but the implications of sensitization remain uncertain. METHODS Seventy two current and former employees of a beryllium manufacturer, including 22 with pathologic changes of chronic beryllium disease (CBD), and 50(More)
UNLABELLED Oscillations in mRNA and protein of circadian clock components can be continuously monitored in vitro using synchronized cell lines. These rhythms can be highly variable due to culture conditions and are non-stationary due to baseline trends, damping and drift in period length. We present a technique for characterizing the modal frequencies of(More)
Linkage of IBD to the pericentromeric region of chromosome 16 has been widely confirmed by analyses of multiple populations. The NOD2 gene is located in the peak region of linkage on chromosome 16 and thought to be involved in the activation of nuclear factor (NF) kappaB in response to bacterial components. Mutations in the NOD2 gene are found to be(More)
The response to an innate immune challenge is conditioned by the time of day, but the molecular basis for this remains unclear. In myeloid cells, there is a temporal regulation to induction by lipopolysaccharide (LPS) of the proinflammatory microRNA miR-155 that correlates inversely with levels of BMAL1. BMAL1 in the myeloid lineage inhibits activation of(More)
Awareness of the increased incidence of carcinoma in the gastric remnant has not been accompanied by improved diagnosis or prolonged survival. The long latent period prior to development of tumor, the insidious nature of symptoms, and the anatomical distortion produced by surgery contribute to the difficulty in detection of these lesions. The radiological(More)
The molecular circadian clock entrains biological rhythms to a 24-hour schedule. Aspects of cardiovascular physiology and, indeed, the incidence of myocardial infarction and stroke are also subject to diurnal variation. The use of rodent models of disrupted clock function has begun to elucidate the role of the molecular clock in the pathophysiology of(More)