Anne M. Cataldo

Learn More
The accumulation of lysosomes and their hydrolases within neurons is a well-established neuropathologic feature of Alzheimer disease (AD). Here we show that lysosomal pathology in AD brain involves extensive alterations of macroautophagy, an inducible pathway for the turnover of intracellular constituents, including organelles. Using immunogold labeling(More)
Macroautophagy, which is a lysosomal pathway for the turnover of organelles and long-lived proteins, is a key determinant of cell survival and longevity. In this study, we show that neuronal macroautophagy is induced early in Alzheimer's disease (AD) and before beta-amyloid (Abeta) deposits extracellularly in the presenilin (PS) 1/Abeta precursor protein(More)
Endocytosis is critical to the function and fate of molecules important to Alzheimer's disease (AD) etiology, including the beta protein precursor (betaPP), amyloid beta (Abeta) peptide, and apolipoprotein E (ApoE). Early endosomes, a major site of Abeta peptide generation, are markedly enlarged within neurons in the Alzheimer brain, suggesting altered(More)
Altered neuronal endocytosis is the earliest known pathology in sporadic Alzheimer's disease (AD) and Down syndrome (DS) brain and has been linked to increased Abeta production. Here, we show that a genetic model of DS (trisomy 21), the segmental trisomy 16 mouse Ts65Dn, develops enlarged neuronal early endosomes, increased immunoreactivity for markers of(More)
Specific antibodies and cytochemical markers combined with several imaging and morphometric techniques were used to characterize the endosomal-lysosomal system in mature neurons of the normal human central nervous system and to quantitate changes in its function in Alzheimer's disease. Compartments containing cathespin D (Cat D) and other acid hydrolases(More)
Early endosomes are a major site of amyloid precursor protein (APP) processing and a convergence point for molecules of pathologic relevance to Alzheimer's disease (AD). Neuronal endosome enlargement, reflecting altered endocytic function, is a disease-specific response that develops years before the earliest stage of AD and Down syndrome (DS). We examined(More)
Intracellular glycogen and glucose-6-phosphatase (G6Pase) activity were identified cytochemically within epithelia of the choroid plexus and ependyma of the cerebral ventricles including the median eminence and area postrema, the cerebral endothelium and pericytes from control, salt-stressed and fasted adult mice. Identification of glycogen was obtained by(More)
An additional copy of the beta-amyloid precursor protein (APP) gene causes early-onset Alzheimer's disease (AD) in trisomy 21 (DS). Endosome dysfunction develops very early in DS and AD and has been implicated in the mechanism of neurodegeneration. Here, we show that morphological and functional endocytic abnormalities in fibroblasts from individuals with(More)
BACKGROUND Endocytic dysfunction and neurotrophin signaling deficits may underlie the selective vulnerability of hippocampal neurons during the progression of Alzheimer's disease (AD), although there is little direct in vivo and biochemical evidence to support this hypothesis. METHODS Microarray analysis of hippocampal CA1 pyramidal neurons acquired via(More)
Calpain proteases influence intracellular signaling pathways and regulate cytoskeleton organization, but the neuronal and pathological roles of individual isoenzymes are unknown. In Alzheimer's disease (AD), the activated form of calpain I is significantly increased while the fate of calpain II has been more difficult to address. Here, calpain II antibodies(More)