Learn More
Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review(More)
Photobleaching and related photochemical processes are recognized experimental barriers to quantification of fluorescence by microscopy. We have measured the kinetics of photobleaching of fluorophores in living and fixed cells and in microemulsions, and have demonstrated the spatial variability of these processes within individual cells. An inverted(More)
The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five(More)
Uptake of benzo(a)pyrene by living cultured cells has been visualized in real time using digital fluorescence-imaging microscopy. Benzo(a)pyrene was noncovalently associated with lipoproteins, as a physiologic mode of presentation of the carcinogen to cells. When incubated with either human fibroblasts or murine P388D1 macrophages, benzo(a)pyrene uptake(More)
BACKGROUND A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would(More)
BACKGROUND In anchorage dependent cells, myosin generated contractile forces affect events closely associated with adhesion such as the formation of stress fibers and focal adhesions, and temporally distal events such as entry of the cell into S-phase. As occurs in many signaling pathways, a phosphorylation reaction (in this case, phosphorylation of myosin(More)
We develop a potential landscape approach to quantitatively describe experimental data from a fibroblast cell line that exhibits a wide range of GFP expression levels under the control of the promoter for tenascin-C. Time-lapse live-cell microscopy provides data about short-term fluctuations in promoter activity, and flow cytometry measurements provide data(More)
‘Irreproducibility’ is symptomatic of a broader challenge in measurement in biomedical research. From the US National Institute of Standards and Technology (NIST) perspective of rigorous metrology, reproducibility is only one aspect of establishing confidence in measurements. Appropriate controls, reference materials, statistics and informatics are required(More)
Vibrational spectra of biomimetic membranes have been obtained using a broad-band approach to sum frequency generation (SFG). A new innovation, broad band SFG (BBSFG) allows for high quality SFG spectra with rapid collection times. With the BBSFG approach, we have followed in situ the formation of a hybrid bilayer membrane (HBM) from the reorganization of(More)
BACKGROUND The use of highly reproducible and spatiallyhomogeneous thin film matrices permits automated microscopy and quantitative determination of the response of hundreds of cells in a population. Using thin films of extracellular matrix proteins, we have quantified, on a cell-by-cell basis, phenotypic parameters of cells on different extracellular(More)