Learn More
BACKGROUND The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has(More)
In plants, sugars act as signalling molecules that control many aspects of metabolism and development. Arabidopsis plants homozygous for the recessive sucrose uncoupled-6 (sun6) mutation show a reduced sensitivity to sugars for processes such as photosynthesis, gene expression and germination. The sun6 mutant is insensitive to sugars that are substrates for(More)
Sugar-mediated regulation of gene expression is a mechanism controlling the expression of many different plant genes. In this review, a compilation of the genes encoding photosynthetic proteins, subject to this mode of regulation, is presented. Several groups have devised different screening strategies to obtain Arabidopsis mutants in sugar sensing and(More)
The Arabidopsis bZIP transcription factor gene ATB2 has been shown previously to be expressed in a light-regulated and tissue-specific way. Here we describe the precise localization of ATB2 expression, using transgenic lines containing an ATB2 promoter-GUS reporter gene construct. The observed expression pattern suggests a role for ATB2 in the control of(More)
A mutant allele of the transcription factor gene MYB10 from apple induces anthocyanin production throughout the plant. This gene, including its upstream promoter, gene coding region and terminator sequence, was introduced into apple, strawberry and potato plants to determine whether it could be used as a visible selectable marker for plant transformation as(More)
The pathway of CO2 reduction to methane in Methanogenium tationis and Methanogenium thermophilicum is similar to that observed in other methanogens. In M. tationis a novel pterin, tatiopterin, is present. This pterin appears to be a structural and functional analog of methanopterin and sarcinapterin. Folate could not substitute for tatiopterin.
In order to increase the branching degree of potato tuber starch, the gene encoding branching enzyme (glgB) of Escherichia coli was expressed in the amylose-free potato mutant. The E. coli glgB was cloned in the binary vector pBIN19 under the transcriptional control of the potato Granule Bound Starch Synthase (GBSS) promoter and transitpeptide sequence. The(More)
Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered pectin composition was analysed. The expression of genes(More)
This report describes the isolation and characterization of a cDNA clone representing a gene specifically expressed in pollen. A cDNA library was constructed against mRNA from mature pollen of Nicotiana tabacum. It was screened differentially against cDNA from mRNA of leaf and of pollen. One clone, NTPc303, was further characterized. On northern blot this(More)
Methanosarcina barkeri was able to grow on L-alanine and L-glutamate as sole nitrogen sources. Cell yields were 0.5 g/l and 0.7 g/l (wet wt), respectively. The mechanism of ammonia assimilation in Methanosarcina barkeri strain MS was studied by analysis of enzyme activities. Activity levels of nitrogen-assimilating enzymes in extracts of cells grown on(More)