Anne J Ridley

Learn More
The function of rac, a ras-related GTP-binding protein, was investigated in fibroblasts by microinjection. In confluent serum-starved Swiss 3T3 cells, rac1 rapidly stimulated actin filament accumulation at the plasma membrane, forming membrane ruffles. Several growth factors and activated H-ras also induced membrane ruffling, and this response was prevented(More)
Cell migration is a highly integrated multistep process that orchestrates embryonic morphogenesis; contributes to tissue repair and regeneration; and drives disease progression in cancer, mental retardation, atherosclerosis, and arthritis. The migrating cell is highly polarized with complex regulatory pathways that spatially and temporally integrate its(More)
Actin stress fibers are one of the major cytoskeletal structures in fibroblasts and are linked to the plasma membrane at focal adhesions. rho, a ras-related GTP-binding protein, rapidly stimulated stress fiber and focal adhesion formation when microinjected into serum-starved Swiss 3T3 cells. Readdition of serum produced a similar response, detectable(More)
ROCKs, or Rho kinases, are serine/threonine kinases that are involved in many aspects of cell motility, from smooth-muscle contraction to cell migration and neurite outgrowth. Recent experiments have defined new functions of ROCKs in cells, including centrosome positioning and cell-size regulation, which might contribute to various physiological and(More)
Rho GTPases are key regulators of cytoskeletal dynamics and affect many cellular processes, including cell polarity, migration, vesicle trafficking and cytokinesis. These proteins are conserved from plants and yeast to mammals, and function by interacting with and stimulating various downstream targets, including actin nucleators, protein kinases and(More)
Cell migration involves dynamic and spatially regulated changes to the cytoskeleton and cell adhesion. The Rho GTPases play key roles in coordinating the cellular responses required for cell migration. Recent research has revealed new molecular links between Rho family proteins and the actin cytoskeleton, showing that they act to regulate actin(More)
Rho GTPases are well known to regulate actin dynamics. They activate two types of actin nucleators, WASP/WAVE proteins and Diaphanous-related formins (DRFs), which induce different types of actin organization. Their ability to interact with membranes allows them to target actin polymerization to discrete sites on the plasma membrane and to intracellular(More)
The pathways by which mammalian Ras proteins induce cortical actin rearrangement and cause cellular transformation are investigated using partial loss of function mutants of Ras and activated and inhibitory forms of various postulated target enzymes for Ras. Efficient transformation by Ras requires activation of other direct effectors in addition to the MAP(More)
Scatter factor/hepatocyte growth factor (SF/HGF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of cell colonies followed by disruption of cell-cell junctions and subsequent cell scattering. These responses are accompanied by changes in the actin cytoskeleton, including increased membrane ruffling and lamellipodium(More)
Rho GTPases hit the headlines several times in 1990-1992: the proteins regulating their GTP-GDP cycle were identified and they were found to be key signal transducers, mediating growth factor-induced changes to the actin cytoskeleton and activating the phagocyte NADPH oxidase. Since then, they have been implicated in numerous cellular processes, from cell(More)