Anne Höytö

Learn More
PURPOSE The effects of radiofrequency (RF) radiation on cellular ornithine decarboxylase (ODC) activity were studied in fibroblasts, two neural cell lines and primary astrocytes. Several exposure times and exposure levels were used, and the fields were either unmodulated or modulated according to the characteristics of the Global System for Mobile (GSM)(More)
BACKGROUND Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to(More)
A replication study with some extensions was made to confirm enhancement of ornithine decarboxylase (ODC) activity in murine L929 fibroblasts after radiofrequency (RF) field exposure reported in earlier studies. L929 cells purchased from two cell banks were exposed for 2, 8, or 24 h to continuous wave or DAMPS (burst modulated at 50 Hz, with 33% duty cycle)(More)
The biological effects of modulated radiofrequency (RF) electromagnetic fields have been a subject of debate since early publications more than 30 years ago, suggesting that relatively weak amplitude-modulated RF electromagnetic fields have specific biological effects different from the well-known thermal effects of RF energy. This discussion has been(More)
Human SH-SY5Y neuroblastoma and mouse L929 fibroblast cells were exposed to 872 MHz radiofrequency (RF) radiation using continuous waves (CW) or a modulated signal similar to that emitted by GSM mobile phones at a specific absorption rate (SAR) of 5 W/kg in isothermal conditions. To investigate possible combined effects with other agents, menadione was used(More)
The effects of low-level radiofrequency (RF) radiation and elevated temperature on ornithine decarboxylase (ODC) activity were investigated in murine L929 fibroblasts. The cells were exposed at 900 MHz either to a pulse-modulated (pulse frequency 217 Hz; GSM-type modulation) or a continuous wave signal at specific absorption rate (SAR) levels of 0.2 W(More)
PURPOSE In our previous studies, exposure to extremely low frequency (ELF) magnetic fields (MF) altered responses to DNA damage caused by menadione. The aim of this study was to evaluate possible ELF MF induced changes in proteins involved in DNA damage responses and in cell cycle distribution. MATERIALS AND METHODS Based on our previous studies, the(More)
PURPOSE The aim of this study was to test the hypothesis that variations in the physiological state of cells explain inconsistent results from in vitro studies on biological effects of radiofrequency (RF) radiation. MATERIALS AND METHODS Murine L929 fibroblasts stimulated with fresh medium, stressed with serum deprivation or not subjected to stimulation(More)
Studies at the cellular level are needed to reveal the cellular and molecular biological mechanisms underlying the biological effects and possible health implications of non-ionising radiation, such as extremely low frequency (ELF) magnetic fields (MFs) and radiofrequency (RF) fields. Our research group has studied the effects of 50 Hz ELF MFs (caused by(More)
Murine embryonic C3H/10T½ fibroblasts were exposed to X-rays at doses of 0.2, 0.5, 1, 2 or 5 Gy. To follow the development of radiation-induced genomic instability (RIGI), the frequency of micronuclei was measured with flow cytometry at 2 days after exposure and in the progeny of the irradiated cells at 8 and 15 days after exposure. Gene expression was(More)