Anne Gallet-Budynek

Learn More
*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of(More)
Forest ecosystems are important sinks for rising concentrations of atmospheric CO(2). In previous research, we showed that net primary production (NPP) increased by 23 +/- 2% when four experimental forests were grown under atmospheric concentrations of CO(2) predicted for the latter half of this century. Because nitrogen (N) availability commonly limits(More)
The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO₂. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO₂(More)
We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes(More)
335 Prey change behaviour with predation threat, but demographic effects vary with prey density: experiments with grasshoppers and birds 349 Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO 2 358 Predator-driven component Allee effects in a wild ungulate(More)
  • 1