Anne E. Williamson

Learn More
Recovery from neuronal activation requires rapid clearance of potassium ions (K+) and restoration of osmotic equilibrium. The predominant water channel protein in brain, aquaporin-4 (AQP4), is concentrated in the astrocyte end-feet membranes adjacent to blood vessels in neocortex and cerebellum by association with alpha-syntrophin protein. Although AQP4 has(More)
PURPOSE This study is a retrospective analysis of the pathology of the hippocampus from patients with medically intractable temporal lobe epilepsy. We attempted to relate neuronal density, immunohistochemistry, electrophysiologic data, and surgical outcome. METHODS Immunostaining patterns for neuropeptide Y, somatostatin, substance P, and dynorphin(More)
The postsynaptic actions of acetylcholine, adenosine, gamma-aminobutyric acid, histamine, norepinephrine, and serotonin were analyzed in human cortical pyramidal cells maintained in vitro. The actions of these six putative neurotransmitters converged onto three distinct potassium currents. Application of acetylcholine, histamine, norepinephrine, or(More)
The thalamus is innervated by histaminergic fibers presumably arising from neurons in the tuberomammillary nucleus of the hypothalamus. The possible function of this histaminergic projection was addressed through investigation of the cellular actions of histamine on guinea pig and cat dorsal lateral geniculate (LGNd) relay neurons maintained as a slice in(More)
DCX-immunoreactive (DCX+) cells occur in the piriform cortex in adult mice and rats, but also in the neocortex in adult guinea pigs and rabbits. Here we describe these cells in adult domestic cats and primates. In cats and rhesus monkeys, DCX+ cells existed across the allo- and neocortex, with an overall ventrodorsal high to low gradient at a given frontal(More)
Norepinephrine (NE) has potent and long-lasting ionic effects on cortical and thalamic neurons. In cortical pyramidal cells, activation of beta-adrenergic receptors results in an enhanced excitability and responsiveness to depolarizing inputs. This enhanced excitability is expressed as a reduction in spike frequency adaptation and is mediated by a marked(More)
Alterations in synaptic inhibition are associated with epileptiform activity in several acute animal models; however, it is not clear if there are changes in inhibition in chronically epileptic tissue. We have used intracellular recordings from granule cells of patients with temporal lobe epilepsy to determine whether synaptic inhibition is compromised. Two(More)
We have compared the cellular and synaptic properties of rodent dentate granule cells with those of humans. The human tissue was obtained from neurosurgical procedures which necessitated removal of the hippocampus for treatment of extra-hippocampal tumors which presented clinically with seizures. The hippocampi studied here were neuroanatomically similar to(More)
Hippocampal depth electrodes are often used to localize seizure onset in patients who may have temporal lobe epilepsy (TLE). A number of features of the spontaneous seizures and of their ictal onset patterns can be analyzed from these recordings. We compared a number of the typical electroencephalographic (EEG) changes at seizure onset with several cellular(More)
OBJECTIVE We examined whether ingestion of medium-chain triglycerides could improve cognition during hypoglycemia in subjects with intensively treated type 1 diabetes and assessed potential underlying mechanisms by testing the effect of beta-hydroxybutyrate and octanoate on rat hippocampal synaptic transmission during exposure to low glucose. RESEARCH(More)