Learn More
The ability of an organism to acquire O(2) from its environment is key to survival and can play an important role in dictating a species' ecological distribution. This study is the first, to our knowledge, to show a tight, phylogenetically independent correlation between hypoxia tolerance, traits involved in dictating O(2) extraction capacity and the(More)
Rising atmospheric carbon dioxide has resulted in scientific projections of changes in global temperatures, climate in general, and surface seawater chemistry. Although the consequences to ecosystems and communities of metazoans are only beginning to be revealed, a key to forecasting expected changes in animal communities is an understanding of species'(More)
Studies with mammals and birds clearly demonstrate that brief preexposure to oxygen deprivation can protect the myocardium from damage normally associated with a subsequent prolonged hypoxic/ischemic episode. However, is not known whether this potent mechanism of myocardial protection, termed preconditioning, exists in other vertebrates including fishes. In(More)
In response to most stressors, fish will elicit a generalized physiological stress response, which involves the activation of the hypothalamic-pituitary-interrenal axis (HPI). As in other vertebrates, this generalized stress response comprises physiological responses that are common to a wide range of environmental, physical and biological stressors.(More)
Population response to global change will depend on responses to a multivariate set of changes in abiotic habitat characteristics and biotic interactions. Organismal biologists seeking to make ecological inferences about the impacts of global change by studying physiological performance have traditionally performed carefully controlled experimental studies(More)
Levels of ubiquitin (Ub)-conjugated proteins, as an index of misfolded or damaged proteins, were measured in notothenioid fishes, with both Antarctic (Trematomus bernacchii, T. pennellii, Pagothenia borchgrevinki) and non-Antarctic (Notothenia angustata, Bovichtus variegatus) distributions, as well as non-notothenioid fish from the Antarctic (Lycodichthys(More)
Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at(More)
INTRODUCTION As the research community explores the effects of ocean acidification on marine ecosystems (Royal Society 2005, Kleypas et al. 2006), a key link to forecasting the effects of this altered seawater chemistry is understanding the response at the organismal level. A potentially productive path for the ocean acidification research community is to(More)
Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies,(More)
have generated extensive fundamental knowledge that now has us superbly positioned for " returning to the organism " (Stillman et al. 2011). The challenge is to extend, integrate, and exploit the insights from " outward " and " inward " gene-oriented biology to develop a deeper understanding of individual organisms' higher-order emergent characteristics,(More)