Anne E. Martin

Learn More
Models of human walking with moderate complexity have the potential to accurately capture both joint kinematics and whole body energetics, thereby offering more simultaneous information than very simple models and less computational cost than very complex models. This work examines four- and six-link planar biped models with knees and rigid circular feet.(More)
The development of powered lower-limb prostheses has the potential to significantly improve amputees' quality of life. By applying advanced control schemes, such as hybrid zero dynamics (HZD), to prostheses, more intelligent prostheses could be designed. Originally developed to control bipedal robots, HZD-based control specifies the motion of the actuated(More)
This paper presents a novel control strategy for an above-knee powered prosthetic leg that unifies the entire gait cycle, eliminating the need to switch between controllers during different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific(More)
Although human gait is often assumed to be periodic, significant variability exists. This variability appears to provide different information than the underlying periodic signal, particularly about fall risk. Most studies on variability have either used step-to-step metrics such as stride duration or point-wise standard deviations, neither of which(More)
It has been hypothesized by many that foot design can influence gait. This idea was investigated in both simulation and hardware for the five-link, planar biped ERNIE controlled under the Hybrid Zero Dynamics paradigm. The effects of walking speed, foot radius, and foot center of curvature location on gait efficiency and kinematics were investigated in a(More)
In psycholinguistic studies using error rates as a response measure, response times (RT) are most often analyzed independently of the error rate, although it is widely recognized that they are related. In this paper we present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and random-effect regression(More)
Predictive simulations of human walking could be used to investigate a wide range of questions. Promising moderately complex models have been developed using the robotics control technique called hybrid zero dynamics (HZD). Existing simulations of human walking only consider the mean motion; therefore, they cannot be used to investigate fall risk, which is(More)
The gait cycle is typically viewed as a periodic sequence of discrete events, starting with heel contact during initial stance and ending with knee extension during late swing. This convention has informed the design of control strategies for powered prostheses and orthoses, which almost universally utilize the concept of a finite state machine (FSM), e.g.,(More)