Learn More
The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90% of the genome. The BN rat sequence is the third complete(More)
BACKGROUND Long oligonucleotide microarrays are potentially more cost- and management-efficient than cDNA microarrays, but there is little information on the relative performance of these two probe types. The feasibility of using unmodified oligonucleotides to accurately measure changes in gene expression is also unclear. RESULTS Unmodified sense and(More)
The Rat Genome Database (RGD, http://rgd.mcw.edu) is an NIH-funded project whose stated mission is 'to collect, consolidate and integrate data generated from ongoing rat genetic and genomic research efforts and make these data widely available to the scientific community'. In a collaboration between the Bioinformatics Research Center at the Medical College(More)
Rat remains a major biomedical model system for common, complex diseases. The rat continues to gain importance as a model system with the completion of its full genomic sequence. Although the genomic sequence has generated much interest, only three complete sequences of the rat mitochondria exist. Therefore, to increase the knowledge of the rat genome, the(More)
The laboratory rat is a major model organism for systems biology. To complement the cornucopia of physiological and pharmacological data generated in the rat, a large genomic toolset has been developed, culminating in the release of the rat draft genome sequence. The rat draft sequence used a variety of assembly packages, as well as data from the Radiation(More)
The Dahl salt-sensitive (SS) rat is a widely used model of human salt-sensitive hypertension and renal injury. We studied the molecular networks that underlie the complex disease phenotypes in the SS model, using a design that involved two consomic rat strains that were protected from salt-induced hypertension and one that was not protected. Substitution of(More)
The BB (BioBreeding) rat is one of the best models of spontaneous autoimmune diabetes and is used to study non-MHC loci contributing to Type 1 diabetes. Type 1 diabetes in the diabetes-prone BB (BBDP) rat is polygenic, dependent upon mutations at several loci. Iddm1, on chromosome 4, is responsible for a lymphopenia (lyp) phenotype and is essential to(More)
In our ongoing effort to identify genes influencing the biological pathways that underlie the metabolic disturbances associated with obesity, we performed genome-wide scanning in 2,209 individuals distributed over 507 Caucasian families to localize quantitative trait loci (QTLs), which affect variation of plasma lipids. Pedigree-based analysis using a(More)
Peripheral T cell lymphopenia (lyp) in the BioBreeding (BB) rat is linked to a frameshift mutation in Ian5, a member of the Immune Associated Nucleotide (Ian) gene family on rat chromosome 4. This lymphopenia leads to type 1 (insulin-dependent) diabetes mellitus (T1DM) at rates up to 100% when combined with the BB rat MHC RT1 u/u genotype. In order, to(More)
Cardiovascular disorders are influenced by genetic and environmental factors. The TIGR rodent expression web-based resource (TREX) contains over 2,200 microarray hybridizations, involving over 800 animals from 18 different rat strains. These strains comprise genetically diverse parental animals and a panel of chromosomal substitution strains derived by(More)