Learn More
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new(More)
A study was made of the neutral comet assay as a potential method for measuring normal cell radiosensitivity. Eleven fibroblast strains were studied comprising nine derived from vaginal biopsies from pretreatment cervical cancer patients and two strains from radiosensitive individuals. DNA double strand break (dsbs) dose-response curves for both initial and(More)
BACKGROUND Cigarette smoking and chemical occupational exposure are the main known risk factors for bladder transitional cell carcinoma (TCC). Oxidative DNA damage induced by carcinogens present in these exposures requires accurate base excision repair (BER). The XRCC1 protein plays a crucial role in BER by acting as a scaffold for other BER enzymes.(More)
MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression through binding to messenger RNAs (mRNA) thereby promoting mRNA degradation or altered translation. A single-nucleotide polymorphism (SNP) located within a miRNA-binding site could thus alter mRNA translation and influence cancer risk and treatment response. The common(More)
Many cancers display increased expression of histone deacetylases (HDACs) and therefore transcriptionally inactive chromatin, resulting in the downregulation of genes including tumour suppressor and DNA repair genes. Histone deacetylase inhibitors (HDACi) are a heterogeneous group of epigenetic therapeutics, showing promising anticancer effects in both(More)
Chemical carcinogens from cigarette smoking and occupational exposure are risk factors for bladder transitional cell carcinoma (TCC). The Xeroderma Pigmentosum Group C (XPC) gene is essential for repair of bulky adducts from carcinogens. The Xeroderma Pigmentosum Group C gene polymorphisms may alter DNA repair capacity (DRC), thus giving rise to genetic(More)
BACKGROUND Chemicals from occupational exposure and components of cigarette smoke can cause DNA damage in bladder urothelium. Failure to repair DNA damage by DNA repair proteins may result in mutations leading to genetic instability and the development of bladder cancer. Immunohistochemistry studies have shown DNA damage signal activation in precancerous(More)
BACKGROUND AND PURPOSE In muscle-invasive bladder cancer there is an urgent need to identify relatively non-toxic radiosensitising agents for use in elderly patients. Histone deacetylase inhibitors radiosensitise tumour cells but not normal cells in vitro and variously downregulate DNA damage signalling, homologous recombination (HR) and non-homologous(More)
The effect of cis-diaminedichloroplatinum(II) (cisplatin) DNA damage on the repair of double-strand breaks by non-homologous end-joining (NHEJ) was determined using cell-free extracts. NHEJ was dramatically decreased when plasmid DNA was damaged to contain multiple types of DNA adducts, along the molecule and at the termini, by incubation of DNA with(More)
BACKGROUND Muscle-invasive bladder cancer (MIBC) can be cured by radical radiotherapy (RT). We previously found tumour MRE11 expression to be predictive of survival following RT in MIBC, and this was independently validated in a separate institute. Here, we investigated germline MRE11A variants as possible predictors of RT outcomes in MIBC, using(More)