Anne E. Giblin

Learn More
Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant(More)
Denitrification, the reduction of the nitrogen (N) oxides, nitrate (NO3-) and nitrite (NO2-), to the gases nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2), is important to primary production, water quality, and the chemistry and physics of the atmosphere at ecosystem, landscape, regional, and global scales. Unfortunately, this process is very(More)
Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar δ15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups(More)
Ammonia-oxidizing bacteria (AOB) play an important role in nitrogen cycling in estuaries, but little is known about AOB diversity, distribution and activity in relation to the chemical and physical changes encountered in estuary systems. Although estuarine salinity gradients are well recognized to influence microbial community structure, few studies have(More)
The relationship between ammonia-oxidizing bacteria (AOB) and potential nitrification rates was examined along a salinity gradient in a New England estuary in spring and late summer over 3 years. Ammonia-oxidizing bacteria abundance was estimated by measuring gene copies of the ammonia monooxygenase catalytic subunit (amoA) using real-time polymerase chain(More)
Abundance of ammonia-oxidizing Archaea (AOA) was found to be always greater than that of ammonia-oxidizing Bacteria along an estuarine salinity gradient, and AOA abundance was highest at intermediate salinity. However, AOA abundance did not correlate with potential nitrification rates. This lack of correlation may be due to methodological limitations or(More)
Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and(More)
We used ingrowth cores to estimate fine root production in organic soils of wet sedge and moist tundra ecosystems near Toolik Lake on Alaska's North Slope. Root-free soil cores contained in nylon mesh tubes (5 cm diameter, 20–30 cm long) were placed in control and chronically fertilized (N plus P) plots in mid-August 1994 and were retrieved 1 year later.(More)
Based on noninvasive eddy correlation measurements at a marine and a freshwater site, this study documents the control that current flow and light have on sediment–water oxygen fluxes in permeable sediments. The marine sediment was exposed to tidal-driven current and light, and the oxygen flux varied from night to day between 229 and 78 mmol m22 d21. A(More)
Dynamic transformations of iron occur seasonally at Great Sippewissett Marsh, Massachusetts. Small changes in the dissolved iron concentration in porewater represent only a small fraction of the iron involved in transformation reactions during the year. During the growing season, salt marsh grasses oxidize the sediment, and a large percentage of sedimentary(More)