Anne-Charlotte Philippe

Learn More
It's well known that in diffusion MRI (dMRI), fibre crossing is an important problem for most existing diffusion tensor imaging (DTI) based tractography algorithms. To overcome these limitations, High Angular Resolution Diffusion Imaging (HARDI) based tractography has been proposed with a particular emphasis on the the Orientation Distribution Function(More)
The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates.(More)
Understanding the relationship between structure and function is a major challenge in neuroscience. Diffusion MRI (dMRI) in the only non-invasive modality allowing to have access to the neural structure. Magnetoencephalography (MEG) is another non-invasive modality that allows a direct access to the temporal succession of cognitive processes. Functional(More)
The K-complex is a transient electroencephalogram (eeg, brain activity) waveform that contributes to sleep stage scoring. An automated detection of K-complexes is an important component of sleep stage monitoring. This automation is difficult due to the stochastic nature of brain signals, presence of noise, complexity, and extreme size of data. We develop an(More)
Effective representation of the diffusion signal’s dependence on diffusion time is a sought-after, yet still unsolved, challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this four-dimensional space – varying over gradient strength, direction and diffusion time. In(More)
In this paper, we present a new approach to the recovery of dipole magnitudes in a distributed source model for magnetoencephalographic (MEG) imaging. This method consists in introducing prior knowledge regarding the anatomical connectivity in the brain to this illposed inverse problem. Thus, we perform cortex parcellation via structural information coming(More)
Effective representation of the four-dimensional diffusion MRI signal - varying over three-dimensional q-space and diffusion time τ - is a sought-after and still unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent the dMRI signal in this qτ-space. Following recent terminology, we(More)
  • 1