Learn More
Actin-based motility demands the spatial and temporal coordination of numerous regulatory actin-binding proteins (ABPs), many of which bind with affinities that depend on the nucleotide state of actin filament. Cofilin, one of three ABPs that precisely choreograph actin assembly and organization into comet tails that drive motility in vitro, binds and(More)
The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends(More)
Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of(More)
Cells use actin assembly to generate forces for membrane protrusions during movement [1] or, in the case of pathogens, to propel themselves in the host cells, in crude extracts [2], or in mixtures of actin and other purified proteins [3]. Significant progress has been made in understanding the mechanism of actin-based motility at a macroscopic level by(More)
Cytokinesis in eukaryotic cells is often accompanied by actomyosin cortical flow. Over 30 years ago, Borisy and White proposed that cortical flow converging upon the cell equator compresses the actomyosin network to mechanically align actin filaments. However, actin filaments also align via search-and-capture, and to what extent compression by flow or(More)
UNLABELLED The expression of resistance genes can cause the ineffectiveness of chemotherapeutics for the treatment of cancer. Therefore, known resistance genes were investigated in oral squamous cell carcinoma (OSCC) and the results were compared with clinico-pathological findings. MATERIALS AND METHODS Fresh frozen samples of 45 primary OSCC were(More)
BACKGROUND The discovery of the multidrug resistance (MDR1) gene product P-glycoprotein (P-gp) has been widely seen as an important milestone in our understanding of the mechanisms underlying the clinical phenomenon of the emergence of resistant cells. MDR1 expression has been shown for numerous solid tumors and for virtually all hematologic malignancies.(More)
Actin filaments constitute one of the main components of cell cytoskeleton. Assembled into bundles in filopodia or in stress fibres, they play a pivotal role in eukaryotes during cell morphogenesis, adhesion and motility. The bundle emergence has been extensively related to specific actin regulators in vivo. Such dynamic modulation was also highlighted by(More)
Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex,(More)
The actin cytoskeleton is a fundamental player in many cellular processes. Ultrastructural studies have revealed its extremely complex organization, where actin filaments self-organize into defined and specialized structures of distinct functions and, yet, are able to selectively recruit biochemical regulators that are available in the entire cell volume.(More)