Anne Catherine Baron

Learn More
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. They are expressed in sensory neurons, where they are thought to be involved in pain perception associated with tissue acidosis. They are also expressed in brain. A number of brain regions, like the hippocampus, contain large amounts of chelatable vesicular Zn(2+).(More)
From a systematic screening of animal venoms, we isolated a new toxin (APETx2) from the sea anemone Anthopleura elegantissima, which inhibits ASIC3 homomeric channels and ASIC3-containing heteromeric channels both in heterologous expression systems and in primary cultures of rat sensory neurons. APETx2 is a 42 amino-acid peptide crosslinked by three(More)
Acid-sensing ion channels (ASICs) are cationic channels activated by extracellular protons. They are expressed in central and sensory neurons where they are involved in neuromodulation and in pain perception. Recently, the PDZ domain-containing protein PICK1 (protein interacting with C-kinase) has been shown to interact with ASIC1a and ASIC2a, raising the(More)
Polypeptide toxins have played a central part in understanding physiological and physiopathological functions of ion channels. In the field of pain, they led to important advances in basic research and even to clinical applications. Acid-sensing ion channels (ASICs) are generally considered principal players in the pain pathway, including in humans. A snake(More)
Tissue acidosis is an important feature of inflammation. It is a direct cause of pain and hyperalgesia. Protons activate sensory neurons mainly through acid-sensing ion channels (ASICs) and the subsequent membrane depolarization that leads to action potential generation. We had previously shown that ASIC transcript levels were increased in inflammatory(More)
The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a(More)
Psalmotoxin 1, a peptide extracted from the South American tarantula Psalmopoeus cambridgei, has very potent analgesic properties against thermal, mechanical, chemical, inflammatory and neuropathic pain in rodents. It exerts its action by blocking acid-sensing ion channel 1a, and this blockade results in an activation of the endogenous enkephalin pathway.(More)
ASIC3, an acid-sensing ion channel subunit expressed essentially in sensory neurons, has been proposed to be involved in pain. We show here for the first time that native ASIC3-like currents were increased in cultured dorsal root ganglion (DRG) neurons following protein kinase C (PKC) stimulation. This increase was induced by the phorbol ester PDBu and by(More)
Mechanosensitive cation channels are thought to be crucial for different aspects of mechanoperception, such as hearing and touch sensation. In the nematode C. elegans, the degenerins MEC-4 and MEC-10 are involved in mechanosensation and were proposed to form mechanosensitive cation channels. Mammalian degenerin homologues, the H(+)-gated ASIC channels, are(More)
Acid-sensing ion channels (ASICs) are excitatory neuronal cation channels, involved in physiopathological processes related to extracellular pH fluctuation such as nociception, ischaemia, perception of sour taste and synaptic transmission. The spider peptide toxin psalmotoxin 1 (PcTx1) has previously been shown to inhibit specifically the proton-gated(More)