Learn More
The accumulation of serpin oligomers and polymers within the endoplasmic reticulum (ER) causes cellular injury in patients with the classical form α1-antitrypsin deficiency (ATD). To better understand the cellular and molecular genetic aspects of this disorder, we generated transgenic C. elegans strains expressing either the wild-type (ATM) or Z mutant form(More)
Extracellular serpins such as antithrombin and alpha1-antitrypsin are the quintessential regulators of proteolytic pathways. In contrast, the biological functions of the intracellular serpins remain obscure. We now report that the C. elegans intracellular serpin, SRP-6, exhibits a prosurvival function by blocking necrosis. Minutes after hypotonic shock,(More)
As an experimental system, Caenorhabditis elegans offers a unique opportunity to interrogate in vivo the genetic and molecular functions of human disease-related genes. For example, C. elegans has provided crucial insights into fundamental biologic processes, such as cell death and cell fate determinations, as well as pathologic processes such as(More)
  • 1