Anne C. Rios

Learn More
The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates(More)
How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH(More)
Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the(More)
How cells in the embryo coordinate epithelial plasticity with cell fate decision in a fast changing cellular environment is largely unknown. In chick embryos, skeletal muscle formation is initiated by migrating Delta1-expressing neural crest cells that trigger NOTCH signaling and myogenesis in selected epithelial somite progenitor cells, which rapidly(More)
The mammary gland represents a unique tissue to study organogenesis as it predominantly develops in the post-natal animal and undergoes dramatic morphogenetic changes during puberty and the reproductive cycle. The physiological function of the mammary gland is to produce milk to sustain the newborn. Here we view the lactating gland through three-dimensional(More)
Expansion and remodelling of the mammary epithelium requires a tight balance between cellular proliferation, differentiation and death. To explore cell survival versus cell death decisions in this organ, we deleted the pro-survival gene Mcl-1 in the mammary epithelium. Mcl-1 was found to be essential at multiple developmental stages including morphogenesis(More)
Planar cell polarity (PCP) is the coordinate organization of cells within the plane of a tissue. PCP is essential for tissue function, such as for proper hearing in the vertebrate ear or for accurate vision in the Drosophila eye. Using the chick embryo, we have recently shown that during early muscle formation, the first formed muscle fibres utilize the PCP(More)
Despite accumulating evidence for a mammary differentiation hierarchy, the basal compartment comprising stem cells remains poorly characterized. Through gene expression profiling of Lgr5+ basal epithelial cells, we identify a new marker, Tetraspanin8 (Tspan8). Fractionation based on Tspan8 and Lgr5 expression uncovered three distinct mammary stem cell(More)
Advances in stem cell research have enabled the generation of 'mini organs' or organoids that recapitulate phenotypic traits of the original biological specimen. Although organoids have been demonstrated for multiple organ systems, there are more limited options for studying mouse mammary gland formation in vitro Here, we have built upon previously(More)