Learn More
The ability to perform de novo biosynthesis of purines is present in organisms in all three domains of life, reflecting the essentiality of these molecules to life. Although the pathway is quite similar in eukaryotes and bacteria, the archaeal pathway is more variable. A careful manual curation of genes in this pathway demonstrates the value of manual(More)
The amyloid β-peptide (Aβ) is a 40-42 residue peptide that is the principal toxic species in Alzheimer's disease (AD). The oxidation of methionine-35 (Met35) to the sulfoxide form (Met35(ox)) has been identified as potential modulator of Aβ aggregation. The role Met35(ox) plays in Aβ neurotoxicity differs among experimental studies, which may be due to(More)
Enzymic activity and protein levels of xanthine oxidase were measured in serial samples of breast milk donated by each of 14 mothers, starting, in all but two cases, within 7 days following parturition. Enzyme activity varied widely, usually reaching peak values during the first 15 days and falling thereafter, by as much as 98%, to basal levels that were(More)
Macromolecular function arises from structure, and many diseases are associated with misfolding of proteins. Molecular simulation methods can augment experimental techniques to understand misfolding and aggregation pathways with atomistic resolution, but the reliability of these predictions is a function of the parameters used for the simulation. There are(More)
The aggregation cascade and peptide-membrane interactions of the amyloid β-peptide (Aβ) have been implicated as toxic events in the development and progression of Alzheimer's disease. Aβ42 forms oligomers and ultimately plaques, and it has been hypothesized that these oligomeric species are the main toxic species contributing to neuronal cell death. To(More)
Participating in undergraduate research can be a pivotal experience for students in life science disciplines. Development of critical thinking skills, in addition to conveying scientific ideas in oral and written formats, is essential to ensuring that students develop a greater understanding of basic scientific knowledge and the research process.(More)
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with its five G-protein coupled receptors (S1P1-5) to regulate cell growth and survival and has been implicated in a variety of diseases including cancer and sickle cell disease. As the key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have(More)
The two isoforms of sphingosine kinase (SphK1 and SphK2) are the only enzymes that phosphorylate sphingosine to sphingosine-1-phosphate (S1P), which is a pleiotropic lipid mediator involved in a broad range of cellular processes including migration, proliferation, and inflammation. SphKs are targets for various diseases such as cancer, fibrosis, and(More)
Adenine deaminases (Ade) and hypoxanthine/guanine phosphoribosyltransferases (Hpt) are widely distributed enzymes involved in purine salvage. Characterization of the previously uncharacterized Ade (MJ1459 gene product) and Hpt (MJ1655 gene product) are discussed here and provide insight into purine salvage in Methanocaldococcus jannaschii. Ade was(More)