Learn More
Malfolded proteins in the endoplasmic reticulum (ER) induce cellular stress and activate c-Jun amino-terminal kinases (JNKs or SAPKs). Mammalian homologs of yeast IRE1, which activate chaperone genes in response to ER stress, also activated JNK, and IRE1alpha-/- fibroblasts were impaired in JNK activation by ER stress. The cytoplasmic part of IRE1 bound(More)
Deposition of proteins of aberrant conformation is the hallmark of many neurodegenerative diseases. Misfolding of the normally globular mutant superoxide dismutase-1 (SOD1) is a central, early, but poorly understood event in the pathogenic cascade leading to familial forms of ALS. Here we report that aggregates composed of an ALS-causing SOD1 mutant(More)
The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded(More)
The mechanisms leading to neuronal death in neurodegenerative disease are poorly understood. Many of these disorders, including Alzheimer's, Parkinson's and prion diseases, are associated with the accumulation of misfolded disease-specific proteins. The unfolded protein response is a protective cellular mechanism triggered by rising levels of misfolded(More)
Protein phosphorylation regulates virtually all biological processes. Although protein kinases are popular drug targets, targeting protein phosphatases remains a challenge. Here, we describe Sephin1 (selective inhibitor of a holophosphatase), a small molecule that safely and selectively inhibited a regulatory subunit of protein phosphatase 1 in vivo.(More)
Deposition of misfolded proteins with a polyglutamine expansion is a hallmark of Huntington disease and other neurodegenerative disorders. Impairment of the proteolytic function of the proteasome has been reported to be both a cause and a consequence of polyglutamine accumulation. Here we found that the proteasomal chaperones that unfold proteins to be(More)
Many biological processes are regulated through the selective dephosphorylation of proteins. Protein serine-threonine phosphatases are assembled from catalytic subunits bound to diverse regulatory subunits that provide substrate specificity and subcellular localization. We describe a small molecule, guanabenz, that bound to a regulatory subunit of protein(More)
The ubiquitin-proteasome system targets many cellular proteins for degradation and thereby controls most cellular processes. Although it is well established that proteasome inhibition is lethal, the underlying mechanism is unknown. Here, we show that proteasome inhibition results in a lethal amino acid shortage. In yeast, mammalian cells, and flies, the(More)
The copper-zinc superoxide dismutase-1 (SOD1) is a highly structured protein and, a priori, one of the least likely proteins to be involved in a misfolding disease. However, more than 140, mostly missense, mutations in the SOD1 gene cause aggregation of the affected protein in familial forms of amyotrophic lateral sclerosis (ALS). The remarkable diversity(More)