Learn More
The reaction of OH and NO(2) to form gaseous nitric acid (HONO(2)) is among the most influential in atmospheric chemistry. Despite its importance, the rate coefficient remains poorly determined under tropospheric conditions because of difficulties in making laboratory rate measurements in air at 760 torr and uncertainties about a secondary channel producing(More)
Many chemical reactions in atmospheric aerosols and bulk aqueous environments are influenced by the surrounding solvation shell, but the precise molecular interactions underlying such effects have rarely been elucidated. We exploited recent advances in isomer-specific cluster vibrational spectroscopy to explore the fundamental relation between the hydrogen(More)
Multidentate, noncovalent interactions between small molecules and biopolymer fragments are central to processes ranging from drug action to selective catalysis. We present a versatile and sensitive spectroscopic probe of functional groups engaged in hydrogen bonding in such contexts. This involves measurement of the frequency changes in specific covalent(More)
Chemical bond breaking involves coupled electronic and nuclear dynamics that can take place on multiple electronic surfaces. Here we report a time-resolved experimental and theoretical investigation of nonadiabatic dynamics during photodissociation of a complex of iodine monobromide anion with carbon dioxide [IBr-(CO2)] on the second excited (A') electronic(More)
Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. Here, we used infrared (IR) activation of cold CH3CHOO Criegee intermediates to drive hydrogen transfer from the methyl group to the terminal oxygen,(More)
We present two quantum calculations of the infrared spectrum of protonated methane (CH5+) using full-dimensional, ab initio-based potential energy and dipole moment surfaces. The calculated spectra compare well with a low-resolution experimental spectrum except below 1000 cm(-1), where the experimental spectrum shows no absorption. The present calculations(More)
Understanding the spectroscopy and dynamics of H5(+) is central in gaining insights into the H3(+) + H2 → H5(+) → H2 + H3(+) proton transfer reaction. This molecular ion exhibits large-amplitude vibrations, which allow for the transfer of a proton between H3(+) and H2 even in its ground vibrational state. With vibrational excitation, the number of open(More)
We analyze the structures and spectral signatures of the cyclic intramolecular proton bond, N-H(+)-A, A = O and F, formed when an excess proton is added to derivatives of the 1,8-disubstituted naphthalene scaffold. These compounds provide a quasi-rigid framework with which to study the spectral complexity often associated with the N-H(+)-A entity.(More)
The Grotthuss mechanism explains the anomalously high proton mobility in water as a sequence of proton transfers along a hydrogen-bonded (H-bonded) network. However, the vibrational spectroscopic signatures of this process are masked by the diffuse nature of the key bands in bulk water. Here we report how the much simpler vibrational spectra of cold,(More)