Learn More
Human colon cancer harbors a small subfraction of tumor-initiating cells (TICs) that is assumed to be a functionally homogeneous stem-cell-like population driving tumor maintenance and metastasis formation. We found unexpected cellular heterogeneity within the TIC compartment, which contains three types of TICs. Extensively self-renewing long-term TICs(More)
Zinc-finger nucleases (ZFNs) allow gene editing in live cells by inducing a targeted DNA double-strand break (DSB) at a specific genomic locus. However, strategies for characterizing the genome-wide specificity of ZFNs remain limited. We show that nonhomologous end-joining captures integrase-defective lentiviral vectors at DSBs, tagging these transient(More)
High-throughput integration site profiling has become a feasible tool to assess vector biosafety and to monitor the cell fate of the gene-corrected cell population in clinical gene therapy studies. Here we report a step-by-step protocol for universal genome-wide and comprehensive integrome analysis that can be performed on >10(2)-10(3) samples of interest(More)
Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as(More)
X-linked chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by a defect in the gp91(phox) gene. In an effort to treat X-CGD, we investigated the safety and efficacy of gene therapy using a retroviral vector, MT-gp91. Two X-CGD patients received autologous CD34(+) cells transduced with MT-gp91 after a conditioning regimen consisting(More)
Clonality analysis of viral vector-transduced cell populations represents a convincing approach to dissect the physiology of tissue and organ regeneration, to monitor the fate of individual gene-corrected cells in vivo, and to assess vector biosafety. With the decoding of mammalian genomes and the introduction of next-generation sequencing technologies, the(More)
Vector-associated side effects in clinical gene therapy have provided insights into the molecular mechanisms of hematopoietic regulation in vivo. Surprisingly, many retrovirus insertion sites (RIS) present in engrafted cells have been found to cluster nonrandomly in close association with specific genes. Our data demonstrate that these genes directly(More)
The challenges of producing and distributing the food necessary to feed an anticipated 9 billion people in developed and developing societies by 2050 without destroying Earth's finite soil and water resources present extremely complex problems that lack simple solutions. The ability of modern societies to adequately address these and other food-related(More)
UNLABELLED Lentiviral vectors are attractive tools for liver-directed gene therapy because of their capacity for stable gene expression and the lack of preexisting immunity in most human subjects. However, the use of integrating vectors may raise some concerns about the potential risk of insertional mutagenesis. Here we investigated liver gene transfer by(More)
Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck(More)